首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

2.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as lipid sources each at inclusion level of 120 g kg?1 and fed to triplicate groups of 15 juvenile iridescent shark, Pangasius hypophthalmus (Sauvage, 1878) (mean weight 10.00 ± 0.70 g) to apparent satiation twice daily for 12 weeks. The results showed that survival of fish was consistently over 95% for all treatments whereas growth performance in the SBO and CPO treatments was similar and significantly (P < 0.05) higher than for fish fed the LO diet. However, fish fed all vegetable oil‐based diets performed better than those fed the FO diet. Muscle and liver fatty acid composition for all treatments generally reflected the composition in the diet and the ratio of n‐3/n‐6 was found to play an important role in P. hypophthalmus, suggesting that excessive amounts of n‐3 fatty acids reduce the overall growth performance. Results of this study thus suggests that P. hypophthalmus fed diets containing vegetable oils (especially CPO and SBO) produce better growth than those fed FO diet without showing any signs of nutrient deficiency.  相似文献   

3.
A feeding trial was conducted to investigate the complete substitution of either fish oil (FO) or squid liver oil (SLO) with crude palm oil (CPO), canola oil (CO) sunflower oil (SFO) or linseed oil (LO), as the sole added lipid source in diets fed to triplicate groups of giant freshwater prawn, Macrobrachium rosenbergii (initial weight = 0.42 ± 0.01 g) for 6 weeks. Prawns fed the CO or SLO diets showed significantly higher (< 0.05) specific growth rate than those fed the FO or CPO diets. The feed conversion ratio of the prawns was significantly better when fed the CO diet, compared with the FO, CPO, SFO and LO diets. The muscle eicosapentaenoic acid content of prawns fed the vegetable oil (VO) diets were not significantly different (P > 0.05) from those fed the FO diet, although all VO‐based diets led to a significantly lower docosahexaenoic acid content compared with prawns fed the FO or SLO diet. The whole‐body total carotenoid content was significantly lower for prawns fed the SLO diet compared with prawns on the CO or CPO diets. The successful use of VO instead of marine‐based oils in prawn diets will likely reduce feeding costs associated with M. rosenbergii aquaculture.  相似文献   

4.
A 20-week feeding trial was carried out to investigate the influence of three palm oil products as the principal dietary lipid source on the growth performance, proximate composition, tissue fatty acid composition and nutrient digestibility of red hybrid tilapia (Oreochromis sp.) fed these diets from stocking to marketable size. Four isonitrogenous (30% crude protein) and isoenergetic (16.5 kJ g 1) practical diets were formulated with 8% of added fish oil (FO), crude palm oil (CPO), palm fatty acid distillate (PFAD) or refined, bleached and deodorized palm olein (RBDPO), respectively. Each diet was fed to triplicate groups of 30 fish of 31.24 ± 0.05 g mean initial body weight. The tilapia were raised at 29 ± 1 °C in 12 round 1000 L fiberglass tanks with a continuous water flow rate of about 1.8 L/min.Results showed that the source of added lipid did not significantly influence (P > 0.05) final body weight, specific growth rate, feed conversion ratio, survival, body indices, hematocrit and production yield of tilapia. There was no significant difference in the fillet proximate composition of fish fed the various diets, except that fish fed the PFAD diet showed lower lipid deposition. The deposition of fatty acids in fish tissues was generally influenced by the fatty acid profile of the diets. Fillet fatty acid profiles of tilapia fed palm oil-based diets had significantly higher concentrations of saturated and monounsaturated fatty acids, but lower levels of polyunsaturated fatty acids (PUFA) compared to the fish fed the FO diet. Fillet of fish fed the FO diet had significantly higher concentrations of EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) compared with fish fed palm oil-based diets. Dietary lipid source did not significantly affect dry matter and protein digestibility (62.1–64.8% and 83.5–85.0%, respectively). The inclusion of dietary palm-origin oils significantly reduced the total lipid digestibility of the diets due mainly to the decreased digestibility of the saturated fatty acids. In all treatments, the apparent digestibilities of both n  3 and n  6 PUFA were the highest, followed by monoenes, while the lowest were the saturated fatty acids. Despite the high free fatty acid content of PFAD (92.2%) compared to CPO (4.8%) and RBDPO (0.1%), the different free fatty acid content did not significantly affect the nutrient digestibility of the palm oil-based diets. Results obtained confirmed the feasibility of feeding tilapia with palm oil-based diets with a 100% substitution of added dietary fish oil throughout the grow-out cycle until marketable size.  相似文献   

5.
An 8-week feeding trial was conducted to determine the effects of various dietary lipids on the growth, tissue proximate composition, muscle fatty acid composition and erythrocyte osmotic fragility of red hybrid tilapia, Oreochromis sp. Five isonitrogenous and isoenergetic semipurified diets were supplemented with 10% of either cod liver oil (CLO), sunflower oil (SFO), crude palm oil (CPO), crude palm kernel oil (CPKO), or a combination of 5% CLO with 5% palm fatty acid distillates (PFAD), respectively. There were no significant effects (P > 0.05) of diet on growth but fish fed the CLO diet showed a significantly (P< 0.05) poorer feed efficiency ratio compared to fish fed the CPO diet. Lipid deposition in fish muscle was mostly similar among fish fed the various diets but bone ash was significantly higher in fish fed the CPO and CPKO diets. Muscle lipids of fish fed palm oil-based diets did not increase in saturated fatty acids content but showed significantly lower polyunsaturated fatty acid (PUFA) concentrations compared to fish fed the CLO diet. The concentrations of individual PUFA in muscle lipids were strongly influenced by dietary PUFA concentrations. Dietary lipids did not markedly affect the structural integrity of erythrocyte membranes but the erythrocytes of tilapia fed the CPO diet were slightly more resistant to osmotic lysis. It was concluded that palm oil products, especially CPO, could be successfully used in the diet of hybrid tilapia based on its availability, cheaper costs and its potential ability to enhance oxidative stability due to its low PUFA content and high natural concentrations of antioxidants.  相似文献   

6.
This study aimed to investigate the effects of dietary crude palm oil (CPO) on fatty acid metabolism in liver and intestine of rainbow trout. Triplicate groups of rainbow trout for 10 weeks at 13 °C were fed on diets in which CPO replaced fish oil (FO) in a graded manner (0–100%). At the end of the trial, fatty acid compositions of flesh, liver and pyloric caeca were determined and highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation were estimated in isolated hepatocytes and caecal enterocytes using [1‐14C]18:3n‐3 as substrate. Growth performance and feed efficiency were unaffected by dietary CPO. Fatty acid compositions of selected tissues reflected the dietary fatty acid composition with increasing CPO resulting in increased proportions of 18:1n‐9 and 18:2n‐6 and decreased proportions of n‐3HUFA, 20:5n‐3 and 22:6n‐3. Palmitic acid, 16:0, was also increased in flesh and pyloric caeca, but not in liver. The capacity of HUFA synthesis from 18:3n‐3 increased by up to threefold in both hepatocytes and enterocytes in response to graded increases in dietary CPO. In contrast, oxidation of 18:3n‐3 was unaffected by dietary CPO in hepatocytes and reduced by high levels of dietary CPO in enterocytes. The results of this study suggest that CPO can be used at least to partially replace FO in diets for rainbow trout in terms of permitting similar growth and feed conversion, and having no major detrimental effects on lipid and fatty acid metabolism, although flesh fatty acid compositions are significantly affected at an inclusion level above 50%, with n‐3HUFA reduced by up to 40%.  相似文献   

7.
A 8‐week feeding trial was conducted to determine the effect of substituting fish oil with palm oil‐laden spent bleaching clay (SBC), a by‐product from crude palm oil (CPO) refining, on growth, feed utilization, fatty acid composition and heavy metal accumulation in the muscle of Nile tilapia, Oreochromis niloticus. Four isonitrogenous and isolipidic practical diets were formulated to contain 0, 100, 200 or 300 g kg?1 SBC. Growth performance of Nile tilapia was significantly better in fish fed the 100 g kg?1 SBC diet compared with fish fed the 0, 200 or 300 g kg?1 SBC diet. Growth and feed utilization efficiency of fish fed 200 or 300 g kg?1 SBC were similar to fish fed the control diet without added SBC. Whole‐body composition, body‐organ indices and haematocrit of tilapia were not affected by dietary treatments. Fatty acid compositions in the muscle lipid of Nile tilapia were strongly influenced by dietary treatments with progressively elevated levels of total saturates and n‐6 PUFA because of the dietary influence of these fatty acids from residual CPO adsorbed onto SBC. A gradual decrease in total n‐3 PUFA concentrations were also observed with the ratio of n‐3 to n‐6 fatty acids in muscle lipids decreasing from 4.75 to 4.41, 3.23 or 2.37 after 8 weeks on the 0, 100, 200 or 300 g kg?1 SBC diet, respectively. The arsenic, cadmium and lead concentrations in the experimental diets increased with increasing dietary levels of SBC but the concentrations of these heavy metals in the whole body and bone of Nile tilapia were not significantly different among fish fed the various diets. The present 8‐week study showed that in fishmeal‐based diets for Nile tilapia, palm oil‐laden SBC can totally replace added fish oil. The use of this presently discarded waste product from palm oil refining in tilapia diets will greatly contribute to reducing the impact of rising feed costs in the culture of tilapia in many tropical countries. Other potential benefits may include acting as a feed binder, removal of mycotoxins in fish feeds as well as adsorbing toxic substances present in the culture water.  相似文献   

8.
Pike perch (Sander lucioperca) has been identified as specie destined to diverse European inland aquaculture, but knowledge on the nutritional requirements is weak. Therefore, we investigated the effect of varying dietary fatty acid (FA) profile by partial replacement of fish oil (FO) with vegetable oils on growth, FA and body composition of juvenile pike perch. An extruded basal diet containing 59 g kg?1 crude lipids (FO) was added with 60 g kg?1 FO, 60 g kg?1 linseed oil (LO) or 60 g kg?1 soybean oil (SO). The resulting dietary FA composition differed mainly in the triglyceride fraction and was characterized by highest amounts of linolenic acid (18:3 n‐3) in the LO diet and linoleic acid in the SO diet. Diet enriched with FO contained highest contents of highly unsaturated FA 20:5 n‐3 (eicosapentaenic acid) and 22:6 n‐3 (docosahexaenic acid). Pike perch were held in a recirculation system and each feeding group (in triplicate) was fed with experimental diets at a daily rate of 35 g kg?1 of biomass for 57 days by automatic feeders. Weight gain and specific growth rate of experimental feeding groups ranged between 18.47 and 19.58 g and 1.37–1.45% day?1 and was not affected by the dietary composition indicating that FO can be replaced by vegetable oils without negative impact on growth performance. In contrast to the whole body and muscle composition, liver tissue was affected by the varying diets. Liver tissues of fish fed diets enriched with vegetable oils showed significantly increased lipid contents of 162 (LO) and 147 (SO) g kg?1 and indicate decreased lipid utilization compared with fish fed FO diet (liver lipid content 112 g kg?1). Nevertheless, hepatosomatic index of pike perch was not influenced by dietary lipid composition. The FA profile of pike perch was generally determined by the dietary FAs.  相似文献   

9.
The replacement of dietary marine fish oil with vegetable oils was examined in fingerling humpback grouper, Cromileptes altivelis, over the course of an 8‐week growth trial. Five isolipidic (10%) and isoproteic (50%) fish meal‐based practical diets were formulated to contain iso‐ingredients but with different sources of lipids [crude palm oil (CPO), refined, bleached and deodorized, palm olein (RBDPO), soybean oil (SBO) or canola oil (CNO)], and their performance was compared with the control diet, which contained cod liver oil (CLO) as the added lipid source. The experimental diets were fed close to apparent satiation twice a day to triplicate groups of fish (10.6 ± 2.2 g). The grouper fingerlings were randomly distributed into groups of 12 fish in cylindrical cages (61 cm depth and 43 cm diameter) that were placed in a 150 tonne polyethylene seawater tank. There were no significant differences (P>0.05) in terms of growth, survival, feed conversion ratio, protein efficiency ratio, net protein utilization, hepatosomatic index and condition factor among fish fed the various dietary treatments. Similarly, the dietary lipid source did not significantly affect the whole body proximate composition of the fish. Muscle and liver fatty acid composition of fish was influenced by the experimental diets. Replacement of dietary CLO with CPO, RBDPO, SBO or CNO produced fish with lower n‐3 highly unsaturated fatty acids and increased levels of 18:2n‐6 in the muscle and liver. The n‐3:n‐6 fatty acid ratio in the muscle of fish fed the CLO‐based diet was 3.0 compared with 0.5–0.8 in the muscle of fish fed the various vegetable oil‐based diets. The present study demonstrated that various vegetable oils can be used in fish meal‐based dietary formulations for humpback grouper without compromising growth or feed utilization efficiency.  相似文献   

10.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

11.
A 12‐week feeding trial was conducted to investigate the interactive effects between water temperature and diets supplemented with different blends of fish oil, rapeseed oil and crude palm oil (CPO) on the apparent nutrient and fatty acid digestibility in Atlantic salmon. Two isolipidic extruded diets with added fish oil fixed at 50% and CPO supplemented at 10% or 25% of total added oil, at the expense of rapeseed oil, were formulated and fed to groups of Atlantic salmon (about 3.4 kg) maintained in floating cages. There were no significant effects (P>0.05) of diet on growth, feed utilization efficiency, muscle total lipid or pigment concentrations. Fatty acid compositions of muscle and liver lipids were mostly not significantly different in salmon fed the two experimental diets but showed elevated concentrations of 18:1n‐9 and 18:2n‐6 compared with initial values. Decreasing water temperatures (11–6°C) did not significantly affect protein, lipid or energy apparent digestibilities of the diets with different oil blends. However, dry matter digestibility decreased significantly in fish fed the diet with CPO at 25% of added oil. Increasing dietary CPO levels and decreasing water temperature significantly reduced the apparent digestibility (AD) of saturated fatty acids. The AD of the saturates decreased with increasing chain length within each temperature regimen irrespective of CPO level fed to the fish. The AD of monoenes and polyunsaturated fatty acids was not affected by dietary CPO levels or water temperature. No significant interaction between diet and water temperature effects was detected on the AD of all nutrients and fatty acids. The results of this study showed that the inclusion of CPO up to about 10% (wt/wt) in Atlantic salmon feeds resulted in negligible differences in nutrient and fatty acid digestibility that did not affect growth performance of fish at the range of water temperatures generally encountered in the grow‐out phase.  相似文献   

12.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

13.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

14.
The efficacy of using cottonseed oil (CSO) as a fish oil (FO) substitute in gilthead seabream (Sparus aurata) juveniles feed was evaluated. Fish (BWi 4.0 ± 2.9 g) were fed one of four isoproteic (~48% CP) and isolipidic (~18% L) diets for 9 weeks. Added oil was either FO (control diet, CTRL) or CSO, replacing 50% (CSO50 diet), 60% (CSO60 diet) and 70% (CSO70 diet) of dietary FO. Results indicated that FO replacement by CSO up to 60% level had no detrimental effects on growth or nutritive utilization and composition in fish muscles. Higher CSO intake (CSO70 diet, 56 g kg?1) led to a 16% reduction in weight gain, 14% in feed utilization (FCR) and 57% in muscle n‐3 long‐chain polyunsaturated fatty acids (lc PUFA) as compared with CTRL and to abundant accumulation of lipid within the hepatocytes. Use of CSO altered fatty acid (FA) profiles of muscle and liver. Data suggested utilization of linoleic acid (LOA) by fish and retain of docosahexaenoic acid (DHA) in muscles. Therefore, limits of CSO inclusion as the main source of supplementary dietary lipid, with no negative effects on fish performance or nutritive composition and utilization in muscles, are: 40–48 g kg?1 feed for gilthead seabream juveniles.  相似文献   

15.
An 8‐week experiment on fingerling black carp Mylopharyngodon piceus was conducted to evaluate the effects of dietary fish oil (FO) supplement on growth, fatty acid composition and non‐specific immunity responses. Five triplicate fingerling groups (initial weight = 2.72 ± 0.35 g) were fed isoenergetic and isonitrogenous diets in which the dietary FO was replaced with rapeseed oil (RO) in graded increments of 25% (0–100%). No significant effects were observed on specific growth rates, survival rates and feed conversion ratios, but there were significant differences in whole body moisture and liver lipid contents (P < 0.05), and the 100% RO replacement diet significantly enhanced hepatosomatic indexes compared to control group (P < 0.05). Other approximate whole body constituents, viscerasomatic ratios and condition factors were not influenced by dietary oil treatments. Fatty acid composition of muscle and liver was influenced by dietary fatty acid input, α‐linoleic acid and γ‐linolenic acid were significantly increased with increasing RO, but eicosapentaenoic acid, docosahexaenoic acid and the n‐3/n‐6 ratio were significantly reduced (P < 0.05). Alternative complement pathway, lysozyme and superoxide dismutase activities were not significantly influenced. These results indicate that black carp fed diets with FO supplement had similar growth and non‐specific immunity to the fish fed diet with RO.  相似文献   

16.
Three isonitrogenous (520 g protein kg?1 DM) and isoenergetic (25 MJ kg?1 DM) diets containing increasing levels of flaxseed oil (FxO; 0%, 40% and 70% of total added oil) at the expense of fish oil (FO) were tested for 33 weeks in groups of 61 individually PIT‐tagged halibut (initial weight, 849 ± 99 g). Effects on fish growth performance, fillet nutritional and sensory quality were determined. Specific growth rate (0.2% day?1), feed conversion ratio (1.2–1.3) and nitrogen and energy retention were not affected by dietary treatments. Dietary fatty acid composition was reflected in fatty acid profiles of halibut muscle, liver and heart. Muscle of fish fed FxO diets contained higher 18:2n‐6 and 18:3n‐3 concentrations whereas 20:5n‐3 and 22:6n‐3 levels were significantly reduced. However, increasing FO replacement induced preferential retention of 22:6n‐3 especially in heart, and a trend for 20:5n‐3 conservation in heart and muscle was observed. FO replacement did not affect colour, texture and the characteristic fish odour and flavour of cooked fillets. By selectively retaining long‐chain polyunsaturated fatty acids halibut can adapt to a lower dietary supply without adverse effects on growth, feed conversion ratio, survival, and fillet nutritional and sensory quality.  相似文献   

17.
This study evaluated the potential for manipulating the fatty acid composition of juvenile red seabream, Pagrus auratus. Prior to the start of the study, three groups of fish had been reared for 3 months on a fish oil based diet or diets where the added fish oil had been replaced with either canola or soybean oil. In the present study, fish that had previously been fed either the canola or soybean oil diets were fed a fish oil based diet. Three additional treatments included fish being maintained on their original diets of fish oil, canola oil or soybean oil. Fish were fed their respective diets twice daily to apparent satiety for 32 days. Samples of fish from each treatment were collected after 0, 1, 2, 4, 8, 16 and 32 days. Composition and growth of the fish were determined at each sample point. Most treatments showed no differences in growth performance, although fish fed a fish oil diet after previously being fed a soybean oil diet showed slightly better growth. No significant differences among treatments were observed in proximate composition of the fish, although there was a significant increase in total fat and individual fatty acid (g kg?1 live‐weight) content of the fish from all treatments over the period of the study. No significant changes in the relative fatty acid composition (% of total fatty acids) over time were observed in the three treatments where fish were maintained on their original diets. In contrast, fish that were previously fed either the canola or soybean oil diets and were then fed a fish oil diet had significant changes in both the relative (% of total fatty acids) and absolute (g kg?1 live‐weight) fatty acid content. Key changes observed included a decrease in the relative levels of polyunsaturated fatty acids (PUFA) such as 18 : 2n ? 6 and 18 : 3n ? 3. Increases in the relative levels of the long‐chain polyunsaturated fatty acids (lcPUFA) 20 : 5n ? 3 and 22 : 6n ? 3 were also observed in both treatments. The rates of absolute (g kg?1 live‐weight) change/accumulation of these fatty acids followed an exponential equation that differed for each fatty acid in each treatment. Examination of the retention efficiency of specific fatty acids also showed marked differences between fatty acids within treatments and also differences between treatments. Biologically important fatty acids such as 20 : 5n ? 3 and 22 : 6n ? 3 had only moderate retention efficiencies and these were unaffected by treatment. In contrast, the retention efficiencies of 18 : 2n ? 6 and 18 : 3n ? 3 suggested selective retention of these fatty acids when fed fish oil diets, but moderate catabolism when fed the plant oil diets. There were also high retention efficiencies of most saturated and monounsaturated fatty acids suggestive of active retention and/or active synthesis of these fatty acids by the fish. The results of this study, particularly the increases in lcPUFA, support the usefulness of a fish oil based finisher diet for fish raised predominantly on plant oil based diets.  相似文献   

18.
An 8‐week feeding trial was conducted on juvenile beluga sturgeon Huso huso to evaluate the effects of different dietary lipid levels and sources on growth performance, physiological indices, proximate composition and fatty acid (FA) profile. Four practical diets, which had either low level (120 g/kg) of canola oil (LCO) and fish oil (LFO) or high level (240 g/kg) of canola oil (HCO) and fish oil (HFO), were fed to triplicate groups of 25 beluga (mean initial body weight 207 ± 0.5 g). The growth performance of beluga was improved by replacing dietary fish oil with canola oil and increasing dietary lipid level. Except the number of red blood cells, lymphocytes, neutrophils and eosinophils, the rest of haematological factors including the values of haemoglobin, haematocrit, number of white blood cells, mean corpuscular haemoglobin concentration, cholesterol and triglyceride concentrations and the number of basophils and monocytes were not significantly affected by dietary lipid sources or levels. Results showed that both moisture and crude fat of the beluga muscle were affected by dietary lipid. The highest moisture and the lowest fat contents were found in the muscle of beluga fed fish oil (LFO). Moreover, the lowest moisture and the highest fat contents were observed in the muscle of beluga fed canola oil (HCO) (< .05). The FA profile of the beluga muscle was significantly influenced by dietary treatments. The highest monounsaturated fatty acids, total n‐6 fatty acids containing linoleic acid and arachidonic acid, and total unsaturated fatty acids were found in fish fed canola oil (LCO and/or HCO) (< .05). However, n‐3 fatty acids containing linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were not affected by the diet (> .05). FA profile of the beluga muscles reflected the proportions of CO and FO in the diet except that there was a decrease in oleic acid and linolenic acid, but an increase in arachidonic acid (C20:4n‐6), eicosapentaenoic acid and docosahexaenoic acid. The obtained data showed that canola oil is an excellent source of supplemental dietary lipid in a practical fish‐meal‐based diet of beluga sturgeon under the experimental conditions. Moreover, the data demonstrated that increasing dietary lipid up to 240 g/kg in beluga sturgeon resulted to improve growth performance and haematology.  相似文献   

19.
The effects of different dietary lipids on the growth, feed utilization and tissue fatty acid composition of a tropical bagrid catfish Mystus nemurus (Cuvier & Valenciennes) were investigated. Eight isonitrogenous and isoenergetic semi‐purified diets were fed to triplicate groups of M. nemurus fingerlings for 10 weeks. Diet lipid levels were fixed at 10%, with 1% coming from residual oil in fishmeal and the remainder from cod liver oil (CLO), corn oil (CORN), soybean oil (SBO), crude palm oil (CPO), refined, bleached and deodorized palm olein (RBDPO) or various combinations of these oils. Catfish fed diets supplemented with 9% RBDPO showed significantly (P < 0.05) higher growth rates compared with fish fed the other seven diets. No significant differences in growth performance or feed efficiency ratio were observed between M. nemurus fed 9% CLO, CORN or CPO or fish fed diets containing 4% CLO with either 5% CORN, SBO, CPO or RBDPO. Based upon these results, palm oil‐based diets can be used effectively for M. nemurus without compromising growth or feed utilization efficiency. Muscle and liver fatty acid composition of M. nemurus reflected that of the dietary oils added in pelleted diets fed to the fish. Considering the lower cost and availability of palm oil (compared with imported vegetable oils and fish oils) in many tropical countries, its use in dietary formulations for M. nemurus, and possibly other catfish species, will make these fish feeds less expensive.  相似文献   

20.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号