首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Water and nutrients are scarce resources in arid and semiarid ecosystems. In these regions, biological soil crusts (BSCs) occupy a large part of the soil surface in the open spaces surrounding patches of vegetation. BSCs affect physicochemical soil properties, such as aggregate stability, water retention, organic carbon (OC) and nitrogen (N) content, associated with primary ecosystem processes like water availability and soil fertility. However, the way BSCs modify soil surface and subsurface properties greatly depends on the type of BSC. We hypothesised that physicochemical properties of soil crusts and of their underlying soils would improve with crust development stage. Physicochemical properties of various types of soil crusts (physical crusts and several BSC development stages) and of the underlying soil (soil layers 0–1 cm and 1–5 cm underneath the crusts) in two semiarid areas in SE Spain were analysed. The properties that differed significantly depending on crust development stage were aggregate stability, water content (WC) (at −33 kPa and −1500 kPa), OC and N content. Aggregate stability was higher under well-developed BSCs (cyanobacterial, lichen and moss crusts) than under physical crusts or incipient BSCs. WC, OC and N content significantly increased in the crust and its underlying soil with crust development, especially in the first centimetre of soil underneath the crust. Our results highlight the significant role of BSCs in water availability, soil stability and soil fertility in semiarid areas.  相似文献   

2.
Biological soil crusts (BSCs) have important ecological functions in arid and semiarid lands, but they remain poorly understood in terms of the changes in microbial communities during BSC succession under in situ field conditions. Here, 454 pyrosequencing was used to assess the microbial community composition of four BSC types in the Tengger Desert of China: alga, lichen (cyanolichen and green alga-lichen), and moss crusts, representing early, middle, and final successional stages of BSCs, respectively. The results showed the highest diversity of microbial communities inhabiting lichen crusts, whereas the lowest diversity was observed in moss crusts. Five phyla, Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Acidobacteria, accounted for about 72% to 87% of total prokaryotic sequences in different BSCs. The most abundant eukaryotic microorganism was Ascomycota, accounting for 47% to 93% of the total eukaryotic sequences. Along the succession of BSCs, the abundance of photoautotrophic Cyanobacteria, Chlorophyta, and Bacillariophyta declined, and that of heterotrophic microorganisms such as bacteria and fungi increased. Statistical analysis showed clear divergency of microbial taxa at the class level among the different successional stages of BSCs. The clustering results at class level showed that the moss crusts were the farthest from the rest in prokaryotic composition; the alga crusts were the most different in terms of eukaryotic microorganisms and the two kinds of lichen crusts were relatively closer in both compositions. Ordination analysis showed that the main variations of community structure among BSCs could be explained best by the abundance of Cyanobacteria and Ascomycota and by physiochemical properties of BSCs, including mechanical composition, moisture, and electrical conductivity. In conclusion, our results indicate that Cyanobacteria and Ascomycota likely play an important role in the evolution of BSC structure and functions and highlight the importance of environmental factors in shaping microbial community structures of BSCs in the Tengger Desert of China.  相似文献   

3.
As vital components of desert systems, the roles of ants in arid ecological processes have been well documented, while little attention has been given to their effects on soil water. We conducted a six-year investigation in sand dune systems stabilized via revegetation, to explore the hydrological role of ants through comparing the influence of ant nests on rainfall infiltration in different-aged revegetated dunes. The presence of ant nests markedly enhanced infiltration due to weakening the rainfall interception by biological soil crusts (BSCs) in revegetated dunes. The distribution of ant nest was denser in older revegetated areas, due to better developed BSCs of later successional stages, compared to younger revegetated areas. Ants prefer later to early successional BSCs because the later lichen–moss dominated crusts were thicker and their surface was more stable than the early cyanobacteria dominated crusts. Conversely, the crustal rainfall interception was positively correlated with BSC thickness. These findings suggest that the occurrence of ant nests in older revegetated areas benefited to the planted shrubs with deeper root systems and maintain a relative constant cover of shrubs in artificial sand-binding vegetation following an increase in infiltration to deeper soil layers.  相似文献   

4.
毛乌素沙地人为干扰苔藓结皮的土壤水分和风蚀效应   总被引:1,自引:1,他引:1  
[目的]为了探讨在毛乌素沙地人为干扰生物结皮的必要性与可行性,并为该区生物结皮的高效利用提供实验依据。[方法]在毛乌素沙地东南缘设置裸沙、苔藓结皮、干扰苔藓结皮、沙蒿、沙蒿+苔藓结皮以及沙蒿+干扰苔藓结皮6个处理小区,通过动态监测各小区土壤水分及风蚀变化过程,分析人为干扰苔藓结皮对土壤水分及风蚀过程的影响。[结果](1)沙地苔藓结皮能够显著提高浅层土壤含水量,降低深层土壤含水量。(2)人为干扰苔藓结皮会引起浅层土壤含水量的降低和降雨入渗深度的增加。(3)与裸沙对照相比,几种处理的减蚀效率大小顺序为:沙蒿+苔藓结皮(97.01%)沙蒿+干扰苔藓结皮(90.87%)苔藓结皮(89.63%)干扰苔藓结皮(69.50%)沙蒿(64.62%)。[结论]植被覆盖度较高时,对苔藓结皮进行适当破坏,能够在不加剧土壤风蚀的前提下,一定程度上改善土壤水分状况。而在无植被或低植被覆盖的地块,要禁止对苔藓结皮的干扰破坏。  相似文献   

5.
Biological soil crusts (BSCs) cover up to 70% of the sparsely-vegetated areas in arid and semiarid regions throughout the world and play a vital role in dune stabilization in desert ecosystems. Soil enzyme activities could be used as significant bioindicators of soil recovery after sand burial. However, little is known about the relationship between BSCs and soil enzyme activities. The objective of this study was to determine whether BSCs could affect soil enzyme activities in revegetated areas of the Tengger Desert. The results showed that BSCs significantly promoted the activities of soil urease, invertase, catalase and dehydrogenase. The effects also varied with crust type and the elapsed time since sand dune stabilization. All the soil enzyme activities tested in this study were greater under moss crusts than under cyanobacteria–lichen crusts. The elapsed time since sand dune stabilization correlated positively with the four enzyme activities. The enzyme activities varied with soil depth and season, regardless of crust type. Cyanobacteria–lichen and moss crusts significantly enhanced all test enzyme activities in the 0–20 cm soil layer, but negatively correlated with soil depth. All four enzyme activities were greater in the summer and autumn than in spring and winter due to the vigorous growth of the crusts. Our study demonstrated that the colonization and development of BSCs could improve soil quality and promote soil recovery in degraded areas of the Tengger Desert.  相似文献   

6.
As a primary successional stage of biological soil crusts (BSCs), cyanobacterial crusts form firstly in the arid and semiarid areas. At the same time, they suffer many stress conditions, such as drought, salt, etc. In this study, we constructed man-made cyanobacterial crusts with Microcoleus vaginatus Gom. and comparatively studied the effects of drought and salt stresses on the crusts. The results showed that crust growth and photosynthetic activity was significantly inhibited by the stress conditions (P < 0.05), and inhibitory effect increased with the increasing stress intensity and treated time. Compared with salt stress, drought completely stopped crust metabolic activity, so the crust biomass was conserved at a higher level, which meant that drought itself might provide the crusts some protection, especially when the crusts simultaneously suffered drought and salt stresses. That is very important for the survival of crusts in the high-salt areas. In addition, to some extent the crusts could adapt to the stress conditions through metabolic adjustment. In our experiment, we found the accumulation of exopolysaccharides (EPS) increased under stress conditions within a certain threshold.  相似文献   

7.
Gorji  M.  Bakhosh  M.  Sohrabi  M.  Pourbabaei  A. A. 《Eurasian Soil Science》2021,54(3):409-416
Eurasian Soil Science - Biological soil crusts (BSCs), are common on soil surface in arid and semiarid regions. They consist of cyanobacteria, algae, fungi, lichens and bryophytes associated with...  相似文献   

8.
The challenges of Vis‐NIR spectroscopy are permanent soil surface variations of moisture and roughness. Both disturbance factors reduce the prediction accuracy of soil organic carbon (SOC) significantly. For improved SOC prediction, both disturbance effects have to be determined from Vis‐NIR spectra, which is especially challenging for roughness. Thus, an approach for roughness quantification under varying moisture and its impact on SOC assessment using Support Vector Machines is presented here.  相似文献   

9.
人工生物土壤结皮特性及其集雨潜力的研究   总被引:2,自引:0,他引:2  
为探讨在太行山半干旱区利用人工土壤生物结皮进行集雨的潜力和可行性,以自然生长的生物土壤结皮为种子,通过培育建立人工土壤生物结皮和生物结皮集雨,对人工土壤生物结皮建成后土壤物理性状、渗透率的变化及人工生物结皮集雨面的集流效率进行了研究。结果表明,人工土壤生物结皮与自然生长的生物结皮一样,可显著改变土壤的颗粒组成,使0~1 cm表层土壤的小颗粒物质含量增加、大颗粒物质减少,但对0~5 cm的土壤容重影响不显著。对土壤入渗速率的测定结果表明,人工培育的土壤生物结皮具有降低入渗速率的作用,与自然土壤相比,生物结皮的土壤初始入渗速率和稳定入渗速率分别下降59.1%和44.4%,达到稳定入渗的加水量也减少50.0%。人工营建的生物结皮集雨面的平均集雨效率达60.86%,与自然土面相比,提高23.0%。对集雨面效益分析表明,生物结皮集雨面不仅具有较高的集雨效果,且使用年限较长,并具有明显的减少地表径流沉积物含量,提高土壤抗蚀性的作用。综上结果可以看出,人工土壤生物结皮是一种极具潜力的绿色环保型集雨材料。  相似文献   

10.
As a key component of desert ecosystems, biological soil crusts (BSCs) play an important role in dune fixation and maintaining soil biota. Soil microbial properties associated with the colonization and development of BSCs may indicate soil quality changes, particularly following dune stabilization. However, very little is known about the influence of BSCs on soil microbes in sand dunes. We examined the influence of BSCs on soil microbial biomass and community composition in revegetated areas of the Tengger Desert. BSCs increased soil microbial biomass (biomass C and N), microbial phospholipid fatty acid (PLFA) concentrations and the ratio of fungal to bacterial PLFAs. The effects varied with crust type and crust age. Moss crusts had higher microbial biomass and microbial PLFA concentrations than cyanobacteria-lichen crusts. Crust age was positively correlated with microbial biomass C and N, microbial PLFA concentrations, bacterial PLFA concentrations, fungal PLFA concentrations and the ratio of fungal to bacterial PLFAs. BSCs significantly affected microbial biomass C and N in the 0–20 cm soil layers, showing a significant negative correlation with soil depth. The study demonstrated that the colonization and development of BSCs was beneficial for soil microbial properties and soil quality in the revegetated areas. This can be attributed to BSCs increasing topsoil thickness after dunes have been stabilized, creating suitable habitats and providing an essential food source for soil microbes.  相似文献   

11.
Monitoring nitrogen (N) in oil palm is crucial for the production sustainability. The objective of this study is to examine the capability of visible (Vis), near infrared (NIR) and a combination of Vis and NIR (Vis + NIR) spectral indices acquired from different sensors for predicting foliar N content of different palm age groups. The N treatments varied from 0 to 2 kg per palm, subjected according to immature, young mature and prime mature classes. The Vis + NIR indices from the ground level-sensor that is green + red + NIR (G + R + NIR) was the best index for predicting N for immature palms (R2 = 0.91), while Vis indices blue + red (B + R) and Green Red Index from the space-borne sensor were significantly useful for N assessment of young and prime mature palms (R2 = 0.70 and 0.50), respectively. The application of vegetation indices for monitoring N status of oil palm is beneficial to examine extensive plantation areas.  相似文献   

12.
In order to estimate the biomass of photoautotrophic organisms in biological soil crusts (BSCs), based on the extraction and determination of phytoplanktonic chlorophyll-a (Chl-a) in aquatic ecosystems, this paper comparatively studied the Chl-a extraction efficiencies in ethanol, acetone, N, N -dimethyl -formamide (DMF) and dimethyl sulphoxide (DMSO) from algae, lichen, and moss crusts, analyzed the effects of dominant organisms or development degree of BSCs, mass of sample, and soil characteristics on the extraction efficiency. The results showed that the extraction efficiencies of different organic solvents were significantly different, and such efficiencies declined with the increase of mass of sample. DMSO resulted in the greatest extraction efficiency, but was not suitable for lichen crusts; DMF strongly underestimated the Chl-a content of man-made crusts relative to the other extractants, and was particularly affected by interfering pigments from the well-developed crusts. Generally, the extraction efficiency of ethanol was greater than that of acetone, and ethanol method showed the greatest stability compared with other 3 solvents. In addition, Chl-a content showed an increasing trend with the succession of BSCs when it was expressed on an areal basis. On the basis of this and related experiments we suggest Chl-a content of BSCs be extracted by ethanol and expressed on an areal basis.  相似文献   

13.
黄土高原生物土壤结皮研究进展与展望   总被引:3,自引:1,他引:2  
张丙昌  武志芳  李彬 《土壤学报》2021,58(5):1123-1131
黄土高原是典型的生态脆弱敏感区和世界上水土流失最为严重的地区,也是当今我国生态恢复和生态文明建设的重点区域.生物土壤结皮是细菌、藻类、真菌和孢子植物与土壤颗粒胶结而成的有机复合体,是干旱半干旱地区地表系统的重要组成部分,它们对黄土高原的水土保护、养分积累和生态恢复具有重要的生态功能.本文论述了生物土壤结皮类型与演替过程...  相似文献   

14.
The ecology and functional role of biological soil crusts (BSCs) in arid and semi-arid zones have been extremely well studied. However, little is known about the biochemical properties related to the number and activity of the microbiota that form the crusts, even though information about these properties is very important for understanding many of the processes that affect the formations. In this study, several properties related to the activity and number of microorganisms (biomass-C, basal respiration, dehydrogenase activity and nitrogen mineralization potential) were determined at different depths (crusts, 0–0.5 cm; middle, 0.5–3 cm and deep, 3–5 cm layers) in two types of crusts (predominated by cyanobacteria and by lichens) in the Tabernas desert (Almeria, SE Spain). The absolute values of the above-mentioned properties and the values expressed relative to the total organic carbon (TOC) content were both much higher in the crust layers than in the surface horizons of soils under Mediterranean or Atlantic climates. A large part of the TOC in the BSCs was contained in the microbiota and another large part was readily metabolized during incubation of the crusts for 10 days at 25 °C. The net nitrogen mineralization rate was also high, and ammonification predominated in the crust layers, whereas nitrification predominated in the middle and deep layers. In all types of BSCs, the microbiota colonized the deep layers, although with greater intensity in the lichen-dominated BSCs than in the cyanobacterial BSCs. The results also indicate that hydrolytic enzymes are not stabilized on soil colloids and their activity depends only on the active microbiota.  相似文献   

15.
Biological soil crusts (BSCs) play an important role in the dune fixation and maintaining soil biota in arid desert systems. Free-living soil nematode communities could be used as significant bioindicators to reflect soil recover regime after sand burial. However, the relationship between BSCs and nematodes is rarely known. To examine the effects of BSCs on soil nematodes, 72 soil samples under cyanobacteria–lichen and moss crusts were collected to analyse nematode communities in the different aged vegetated areas at the southeastern edge of the Tengger Desert. Our results showed the colonization and development of BSCs significantly enhanced nematode diversity. Nematode abundances, generic richness, H′, MI, EI and SI were greater under crusts than those under noncrust. In particular, nematode abundances, generic richness, H′, MI, EI and SI were positively correlated with crust ages. The differences in nematode communities were also dependent upon crust types. Nematode abundances and generic richness under moss crusts were higher than those under cyanobacteria–lichen crusts. This can be contributed to the present and succession of BSCs that increased thickness of topsoil after dunes have been stabilized, namely, creating suitable habitats and providing an essential food source for nematodes.  相似文献   

16.
In arid and semi-arid regions, pioneer organisms form complex communities that penetrate the upper millimetres of the bare substrate, creating biological soil crusts (BSC). These thin crusts play a vital role in whole ecosystem functioning because they enrich bare surfaces with organic matter, initiate biogeochemical cycling of elements, modify hydrological cycles, etc., thus enabling the ground to be colonized by vascular plants. Various hydrolase enzymes involved in the carbon (cellulase, β-glucosidase and invertase activities), nitrogen (casein-protease and BAA-protease activities) and phosphorus (alkaline phosphomonoesterase activity) cycles were studied at three levels (crust, middle and deep layers) of three types of BSCs from the Tabernas Desert (SE Spain), representing an ecological gradient ranging from crusts predominated by cyanobacteria to crusts predominated by lichens (Diploschistes diacapsis, Lepraria crassissima). All enzyme activities were higher in all layers of all BSCs than in the bare substrate. The enzymes that hydrolyze low molecular weight substrates were more active than those that hydrolyze high molecular weight substrates (cellulase, casein-protease), highlighting the pioneering characteristics of the BSCs. The hydrolytic capacity developed in parallel to that of ecological succession, and the BSCs in which enzyme activity was highest were those under L. crassissima. The enzyme activity per unit of total organic C was extremely high; the highest values occurred in the BSCs formed by cyanobacteria and the lowest in those formed by lichens, which indicates the fundamental role that the primary colonizers (cyanobacteria) play in enriching the geological substrate with enzymes that enable degradation of organic remains and the establishment of more developed BSCs. The results of the study combine information on different enzyme activities and provide a clear vision of how biogeochemical cycles are established in BSCs, thus confirming the usefulness of enzyme assays as key tools for examining the relationship between biodiversity and ecosystem function in biological soil crusts.  相似文献   

17.
Dryland ecosystems have long been considered to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations of both in soils under plants relative to interspace soils. We examined the distribution of soil resources in two plant communities (dominated by either the shrub Coleogyne ramosissima or the grass Stipa hymenoides) at two locations. Interspace soils were covered either by early successional biological soil crusts (BSCs) or by later successional BSCs (dominated by nitrogen (N)-fixing cyanobacteria and lichens). For each of the 8 plant type×crust type×locations, we sampled the stem, dripline, and 3 interspace distances around each of 3 plants. Soil analyses revealed that only available potassium (Kav) and ammonium concentrations were consistently greater under plants (7 of 8 sites and 6 of 8 sites, respectively). Nitrate and iron (Fe) were greater under plants at 4 sites, while all other nutrients were greater under plants at less than 50% of the sites. In contrast, calcium, copper, clay, phosphorus (P), and zinc were often greater in the interspace than under the plants. Soil microbial biomass was always greater under the plant compared to the interspace. The community composition of N-fixing bacteria was highly variable, with no distinguishable patterns among microsites. Bacterivorous nematodes and rotifers were consistently more abundant under plants (8 and 7 sites, respectively), and fungivorous and omnivorous nematodes were greater under plants at 5 of the 8 sites. Abundance of other soil biota was greater under plants at less than 50% of the sites, but highly correlated with the availability of N, P, Kav, and Fe. Unlike other ecosystems, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity in soils of this ecosystem is likely due to (1) interspace soils covered with BSCs, (2) little incorporation of above-ground plant litter into soils, and/or (3) root deployment patterns.  相似文献   

18.
生物结皮土壤-水文-侵蚀效应研究进展   总被引:2,自引:1,他引:2  
生物土壤结皮(简称生物结皮)是由隐花植物、微小生物和土壤表层颗粒胶结形成的一种特殊复合体,广泛分布于各类气候和生境条件。作为生态系统的重要组分,生物结皮在不同生物气候区土壤的生态过程、水文过程、生物过程、地球化学循环过程以及生态修复过程中发挥着重要作用。从生物结皮影响土壤物理、化学、生物学性质以及土壤水文与侵蚀过程等方面对其生态功能进行总结和概述,在此基础上,从研究区域和时空尺度、多过程耦合机制、生物结皮影响氮循环的过程及其对氮沉降的响应机制、生物结皮与维管植物空间分布及互动关系等方面,展望了该领域有待深化的问题及今后的发展方向,以期促进我国生物结皮相关研究工作,加深对生物结皮生态功能及地表过程的认识。  相似文献   

19.
Despite the critical role of biological soil crusts (BSCs) in arid and semi-arid ecosystem function, few studies are found concerning the most important environmental variables affecting their distribution and physiology. This study seeks to determine soil and microenvironmental factors affecting the spatial distribution and pigment production of BSC-forming lichens and mosses in open patches of a semi-arid Mediterranean kermes oak thicket. We measured late-successional BSC cover, shrub cover, distance to nearest kermes oak (to test for effects of kermes oak thicket microenvironment on BSC), and pigment concentration of one lichen (Cladonia foliacea) and one moss (Pleurochaete squarrosa) species in the Nature Reserve El Regajal-Mar de Ontígola (Central Spain). At the macroscale (>0.5 m), results showed that BSC distribution and pigments were tightly coupled to a suite of soil properties, in particular soil pH, Fe, and Ca. Specifically, soil pH had a positive relationship with the cover of five individual BSC-forming lichen species and was negatively related to pigment production in C. foliacea. When pH was excluded from the analysis, Ca appeared as the main soil variable and was correlated with total BSC cover and total lichen cover. The micronutrient Fe had a significant positive relationship with the concentration of eight pigments in P. squarrosa and was also coupled with the cover of two BSC-forming lichens. Manganese, previously proposed as a key limiting micronutrient for BSCs, affected lichen diversity in a negative way. At the microscale (∼0.5 m), kermes oak microenvironment, shrub cover, and moss cover were determinants of BSC distribution, and total lichen and total BSC cover were overrepresented on N and E-facing shrub microsites. Our findings suggest that soil chemical variability and microsite diversity created by neighbouring vegetation affect BSC distribution in complex and essential ways and that studies aiming to explore BSC-environment relationships should be conducted at various spatial scales. Studies based on species- or group-specific responses are, thus, inadequate to unveil the main factors determining the distribution of the diverse organisms that constitute BSCs and/or to propose potential tools aiming to restore BSC in arid and semiarid ecosystems.  相似文献   

20.
Semiarid ecosystems, also known as drylands, contain small amounts of carbon (C). To date only few studies have evaluated soil C dynamics in these ecosystems. Cyanobacterial soil crusts are considered a major source of organic C in semiarid ecosystems through photosynthesis, increasing soil organic C (SOC) pool as carbohydrates. This study considers cyanobacterial soil crusts as a source of C in the southwest Kalahari. Cyanobacterial soil crusts are well adapted to drylands because extracellular polysaccharide (EPS) secretions provide stabilization of soil and resistance to desiccation. The carbohydrate and chlorophyll a content were evaluated in the upper soil profile on Kalahari Sands and pan soils. Topsoil carbohydrate concentration decreased exponentially with depth. The carbohydrate content produced in cyanobacterial soil crusts in the southwest Kalahari represents up to 75% of the total SOC and is thus an essential component for the fertility of Kalahari Sand soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号