首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this work were to evaluate the genetic variability of Meloidogyne enterolobii by molecular markers, and develop species‐specific molecular markers for application in detection. Sixteen M. enterolobii isolates from different geographical regions (Brazil and other countries) and hosts were used in this study. The identification and purification of the populations were carried out based on isoenzyme phenotype. The DNA amplification of the intergenic region (IGS) of the rDNA and of the region between the cytochrome oxidase subunit II (COII) and 16S rRNA genes (mtDNA) produced specific fragments of the expected size for this nematode, i.e. 780 and 705 bp, respectively. Intraspecific variability among the isolates was evaluated with three different neutral molecular markers: AFLP, ISSR and RAPD. The results showed a low level of diversity among the isolates tested, indicating that M. enterolobii is a genetically homogeneous root‐knot nematode species. The RAPD method allowed the identification of a species‐specific RAPD fragment for M. enterolobii. This fragment was cloned and sequenced, and from the sequence obtained, a set of primers was designed and tested. The amplification of a 520‐bp‐long fragment occurred only for the 16 isolates of M. enterolobii and not for the 10 other Meloidogyne species tested. In addition, positive detection was achieved in a single individual female, egg‐mass and second stage juvenile of this nematode. This SCAR species‐specific marker for M. enterolobii represents a new molecular tool to be used in the detection of this nematode from field samples and as a routine diagnostic test for quarantine devices .  相似文献   

2.
The objective of this study was to develop a rapid, sensitive detection assay for the quarantine pathogen Xanthomonas arboricola pv. pruni, causal agent of stone fruit bacterial spot, an economically important disease of Prunus spp. Unique targets were identified from X. arboricola pv. pruni genomes using a comparative genomics pipeline of other Xanthomonas species, subspecies and pathovars, and used to identify specific diagnostic markers. Loop‐mediated isothermal amplification (LAMP) was then applied to these markers to provide rapid, sensitive and specific detection. The method developed showed unrivalled specificity with the 79 tested strains and, in contrast to previously established techniques, distinguished between phylogenetically close subspecies such as X. arboricola pv. corylina. The sensitivity of this test is comparable to that of a previously reported TaqMan? assay at 103 CFU mL?1, while the unrivalled speed of LAMP technology enables a positive result to be obtained in <15 min. The developed assay can be used with real‐time fluorescent detectors for quantitative results as well as with DNA‐staining dyes to function as a simplified strategy for on‐site pathogen detection.  相似文献   

3.
Pyrenopeziza brassicae (anamorph Cylindrosporium concentricum) is an ascomycete fungus that causes light leaf spot (LLS) disease of brassicas. It has recently become the most important pathogen of winter oilseed rape (Brassica napus) crops in the UK. The pathogen is spread by both asexual splash‐dispersed conidia and sexual wind‐dispersed ascospores. Such inoculum can be detected with existing qualitative and quantitative PCR diagnostics, but these require time‐consuming laboratory‐based processing. This study describes two loop‐mediated isothermal amplification (LAMP) assays, targeting internal transcribed spacer (ITS) or β‐tubulin DNA sequences, for fast and specific detection of P. brassicae isolates from a broad geographical range (throughout Europe and Oceania) and multiple brassica host species (B. napus, B. oleracea and B. rapa). Neither assay detected closely related Oculimacula or Rhynchosporium isolates, or other commonly occurring oilseed rape fungal pathogens. Both LAMP assays could consistently detect DNA amounts equivalent to 100 P. brassicae conidia per sample within 30 minutes, although the β‐tubulin assay was more rapid. Reproducible standard curves were obtained using a P. brassicae DNA dilution series (100 ng–10 pg), enabling quantitative estimation of amounts of pathogen DNA in environmental samples. In planta application of the β‐tubulin sequence‐based LAMP assay to individual oilseed rape leaves collected from the field found no statistically significant difference in the amount of pathogen DNA present in parts of leaves either with or without visible LLS symptoms. The P. brassicae LAMP assays described here could have multiple applications, including detection of symptomless host infection and automated real‐time monitoring of pathogen inoculum.  相似文献   

4.
Fusarium oxysporum f. sp. lactucae (FOL) is a soil‐ and seedborne pathogen and the causal agent of fusarium wilt on lettuce. Four races have been identified within FOL, with different worldwide distribution. Several molecular techniques have been used to detect and identify this pathogen; however, not all of them have the optimal characteristics in terms of sensitivity to perform FOL detection in plant and seed material. A loop‐mediated isothermal amplification (LAMP) assay was developed based on the sequence‐characterized amplified region (SCAR) obtained in a previous rapid amplification of polymorphic DNA (RAPD) study. The LAMP assay has been validated according to the EPPO standard PM7/98. The LAMP assay was tested with lettuce seeds, soil and plant material, and can be used successfully to amplify DNA from each of these matrices. In seed lots artificially inoculated with FOL, the detection limit of the LAMP test was 0.004% infected seed.  相似文献   

5.
The aim of this study was to develop a rapid, sensitive and reliable field‐based assay for detection of the quarantine pathogen Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the most destructive and economically important bacterial disease of kiwifruit. A comparative genomic approach was used on the publicly available Psa genomic data to select unique target regions for the development of two loop‐mediated isothermal amplification (LAMP) assays able to detect Psa and to discriminate strains belonging to the highly virulent and globally spreading Psa biovar 3. Both LAMP assays showed specificity in accordance with their target and were able to detect reliably 125 CFU per reaction in less than 30 min. The developed assays were able to detect the presence of Psa in naturally infected kiwifruit material with and without symptoms, thus increasing the potential of the LAMP assays for phytosanitary use.  相似文献   

6.
Management of grape powdery mildew (Erysiphe necator) and other polycyclic diseases often relies on calendar‐based pesticide application schedules that assume the presence of inoculum. An inexpensive, loop‐mediated isothermal amplification (LAMP) assay was designed to quickly detect airborne inoculum of E. necator to determine when to initiate a fungicide application programme. Field efficacy was tested in 2010 and 2011 in several commercial and research vineyards in the Willamette Valley of Oregon from pre‐bud break to véraison. In each vineyard, three impaction spore traps were placed adjacent to the trunk. One trap was maintained and used by the grower to conduct the LAMP assay (G‐LAMP) on‐site and the other two traps were used for laboratory‐conducted LAMP (L‐LAMP) and quantitative PCR assay (qPCR). Using the qPCR as a gold standard, L‐LAMP was comparable with qPCR in both years, and G‐LAMP was comparable to qPCR in 2011. Latent class analysis indicated that qPCR had a true positive proportion of 98% in 2010 and 89% in 2011 and true negative proportion of 96% in 2010 and 64% in 2011. An average of 3·3 fewer fungicide applications were used when they were initiated based on spore detection relative to the grower standard practice. There were no significant differences in berry or leaf incidence between plots with fungicides initiated at detection or grower standard practice plots, suggesting that growers using LAMP to initiate fungicide applications can use fewer fungicide applications to manage powdery mildew compared to standard practices.  相似文献   

7.
8.
Molecular diagnostics of plant pathogens are crucial to prevent disease spread and to enhance food quality and security. A comparative genomics approach using genomes of different Xanthomonas species and pathovars was applied to identify highly specific targets in the genome of Xanthomonas fragariae, the causal agent of angular leaf spot of strawberry, listed under quarantine regulations in Europe. A reliable and sensitive loop‐mediated isothermal amplification (LAMP) assay was designed using a unique marker, providing a highly specific and rapid detection technique, convenient for on‐site detection. Specificity of the designed assay was tested on 37 strains from a culture collection of X. fragariae, 82 strains of other Xanthomonas species and pathovars and 11 strains of other bacterial genera isolated from strawberry leaves. A detection limit of 102 fg was achieved, approximating to 20 genome copies per reaction. When performing analyses with crude plant material, a consistent lower detection efficiency of 102 CFU mL?1 was achieved. The LAMP assay designed in this study was adapted to work on crude plant material without any prior extensive extraction steps or incubation period; moreover, it does not require advanced analytical knowledge or a fully equipped laboratory. Results were produced within 7–20 min, depending on the pathogen concentration, thus providing a high‐throughput and user‐friendly method for detection and screening of plant material in support of quarantine regulations.  相似文献   

9.
BACKGROUND: Bemisia tabaci, the sweetpotato whitefly, is a globally invasive pest that causes serious agricultural damage by transmitting plant viruses. This pest forms a cryptic species complex that displays morphologically indistinguishable biotypes. Among them, the B and Q biotypes are the most important pests worldwide. Because they have different levels of insecticide resistance, these biotypes must be identified in order to achieve proper pest control. Therefore, a convenient, rapid and specific detection method for identifying the two biotypes is necessary. RESULTS: Loop‐mediated isothermal amplification (LAMP) was employed for rapid identification of B. tabaci B and Q biotypes. By combining a quick DNA extraction method, identification of the two biotypes was achieved within 1 h of detection time. The LAMP assay was applied to study the dynamics of B. tabaci biotypes both in the field and in greenhouses. It was found that, while temperature may be important for population dynamics of the whitefly in the field, population dynamics in greenhouse conditions may be influenced by the types of insecticide. CONCLUSION: The newly designed LAMP assay is a simple, rapid and accurate method for identifying the B and Q biotypes. It can be conducted by non‐specialists and can contribute to pest management. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
This test performance study (TPS) was carried out on DNA samples from grapevine, clematis, fungi and bacteria to compare and validate loop‐mediated isothermal amplification (LAMP) tests for detection of Grapevine flavescence dorée phytoplasma and ‘Candidatus Phytoplasma solani’ (Grapevine Bois noir phytoplasma). Two LAMP tests, for Grapevine flavescence dorée phytoplasma and ‘Candidatus Phytoplasma solani’ (as developed by Kogov?ek and colleagues), with proven applicability for rapid laboratory or on‐site detection were included in this study. They were performed in 10 laboratories. In addition, the commercial Qualiplante/Hyris isothermal amplification test for Grapevine flavescence dorée phytoplasma was performed in three laboratories. The accuracy of the three tests was shown to be over 98%. Moreover, the high accuracy of these tests, which used different devices across different laboratories, confirmed their reproducibility.  相似文献   

11.

BACKGROUND

Rapid genetic on‐site identification methods at points of entry, such as seaports and airports, have the potential to become important tools to prevent the introduction and spread of economically harmful pest species that are unintentionally transported by the global trade of plant commodities. This paper reports the development and evaluation of a loop‐mediated isothermal amplification (LAMP)‐based identification system to prevent introduction of the three most frequently encountered regulated quarantine insect species groups at Swiss borders, Bemisia tabaci, Thrips palmi and several regulated fruit flies of the genera Bactrocera and Zeugodacus.

RESULTS

The LAMP primers were designed to target a fragment of the mitochondrial cytochrome c oxidase subunit I gene and were generated based on publicly available DNA sequences. Laboratory evaluations analysing 282 insect specimens suspected to be quarantine organisms revealed an overall test efficiency of 99%. Additional on‐site evaluation at a point of entry using 37 specimens performed by plant health inspectors with minimal laboratory training resulted in an overall test efficiency of 95%. During both evaluation rounds, there were no false‐positives and the observed false‐negatives were attributable to human‐induced manipulation errors. To overcome the possibility of accidental introduction of pests as a result of rare false‐negative results, samples yielding negative results in the LAMP method were also subjected to DNA barcoding.

CONCLUSION

Our LAMP assays reliably differentiated between the tested regulated and non‐regulated insect species within <1 h. Hence, LAMP assays represent suitable tools for rapid on‐site identification of harmful pests, which might facilitate an accelerated import control process for plant commodities. © 2018 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

12.
A molecular‐based assay was employed to analyse and accurately identify various root‐knot nematodes (Meloidogyne spp.) parasitizing potatoes (Solanum tuberosum) in South Africa. Using the intergenic region (IGS) and the 28S D2–D3 expansion segments within the ribosomal DNA (rDNA), together with the region between the cytochrome oxidase subunit II (COII) and the 16S rRNA gene of the mtDNA, 78 composite potato tubers collected from seven major potato growing provinces were analysed and all Meloidogyne species present were identified. During this study, Mincognita, M. arenaria, M. javanica, M. hapla, M. chitwoodi and M. enterolobii were identified. The three tropical species M. javanica, M. incognita and M. arenaria were identified as the most prevalent species, occurring in almost every region sampled. Meloidogyne hapla and M. enterolobii occurred in Mpumalanga and KwaZulu‐Natal, respectively, while M. chitwoodi was isolated from two growers located within the Free State. Results presented here form part of the first comprehensive surveillance study of root‐knot nematodes to be carried out on potatoes in South Africa using a molecular‐based approach. The three genes were able to distinguish various Meloidogyne populations from one another, providing a reliable and robust method for future use in diagnostics within the potato industry for these phytoparasites.  相似文献   

13.
In Europe the most devastating phytoplasma associated with grapevine yellows (GY) diseases is a quarantine pest, flavescence dorée (FDp), from the 16SrV taxonomic group. The on‐site detection of FDp with an affordable device would contribute to faster and more efficient decisions on the control measures for FDp. Therefore, a real‐time isothermal LAMP assay for detection of FDp was validated according to the EPPO standards and MIQE guidelines. The LAMP assay was shown to be specific and extremely sensitive, because it detected FDp in all leaf samples that were determined to be FDp infected using quantitative real‐time PCR. The whole procedure of sample preparation and testing was designed and optimized for on‐site detection and can be completed in one hour. The homogenization procedure of the grapevine samples (leaf vein, flower or berry) was optimized to allow direct testing of crude homogenates with the LAMP assay, without the need for DNA extraction, and was shown to be extremely sensitive.  相似文献   

14.
A rapid DNA extraction and loop‐mediated isothermal amplification (LAMP) procedure was developed and evaluated for the detection of two specific groups of phytoplasmas from infected plant material. Primers based upon the 16–23S intergenic spacer (IGS) region were evaluated in LAMP assays for amplification of group 16SrI (aster yellows group) and group 16SrXXII (Cape St Paul wilt group) phytoplasma strains. DNA could be extracted from leaf material (16SrI phytoplasmas) or coconut trunk borings (16SrXXII phytoplasmas) onto the membranes of lateral flow devices, and small sections of these membranes were then added directly into the LAMP reaction mixture and incubated for 45 min at 65°C. Positive reactions were detected through the hydroxyl napthol blue colorimetric assay within 1 h of the start of DNA extraction, and were confirmed by subsequent agarose gel electrophoresis of the LAMP products. The level of detection was comparable to that obtained by nested PCR using conventional 16S rDNA phytoplasma‐specific primers. Furthermore, the assays were specific for the phytoplasmas they were designed to detect – the 16SrI assay only detected 16SrI phytoplasmas and not those from any other phylogenetic groups, whilst the 16SrXXII assay only detected 16SrXXII phytoplasmas. The DNA extractions and LAMP assay are easy to perform, requiring minimal equipment, and may therefore form the basis of a rapid and reliable field‐detection system for phytoplasmas.  相似文献   

15.
采用环介导等温扩增法(LAMP)快速检测苹果根结线虫   总被引:7,自引:4,他引:3  
为高效、简便、快速地对我国进境植物检疫性有害生物名录中的非中国种—苹果根结线虫Meloidogyne mali进行检疫,通过比较Gen Bank中根结线虫相关序列,以苹果根结线虫28S r DNA非保守区域序列设计环介导等温扩增(loop-mediated isothermal amplification,LAMP)的特异性引物,并优化反应条件,建立一种可快速检测苹果根结线虫的LAMP检测体系。结果显示:d NTPs浓度为0.4 mmol/L、Mg~(2+)浓度为5.0 mmol/L、不添加甜菜碱、反应时间为60 min时,LAMP检测体系扩增效率最高;用琼脂糖凝胶电泳、SYBR Green I染色和LFD试纸均能检测到苹果根结线虫的扩增产物。所建立的LAMP检测体系能够从10种供试植物线虫种群中特异性地检测出苹果根结线虫,灵敏度为1/20 000条线虫DNA,比常规PCR灵敏度高10倍。表明所建立的苹果根结线虫LAMP快速检测体系可用于我国口岸进境植物中苹果根结线虫检疫。  相似文献   

16.
Meloidogyne ethiopica is an important nematode pathogen causing serious economic damage to grapevine in Chile. In Brazil, M. ethiopica has been detected with low frequency in kiwifruit and other crops. The objectives of this study were to evaluate the intraspecific genetic variability of M. ethiopica isolates from Brazil and Chile using AFLP and RAPD markers and to develop a species‐specific SCAR‐PCR assay for its diagnosis. Fourteen isolates were obtained from different geographic regions or host plants. Three isolates of an undescribed Meloidogyne species and one isolate of M. ethiopica from Kenya were included in the analysis. The results showed a low level of diversity among the M. ethiopica isolates, regardless of their geographical distribution or host plant origin. The three isolates of Meloidogyne sp. showed a high homogeneity and clustered separately from M. ethiopica (100% bootstrap). RAPD screenings of M. ethiopica allowed the identification of a differential DNA fragment that was converted into a SCAR marker. Using genomic DNA from pooled nematodes as a template, PCR amplification with primers designed from this species‐specific SCAR produced a fragment of 350 bp in all 14 isolates of M. ethiopica tested, in contrast with other species tested. This primer pair also allowed successful amplification of DNA from single nematodes, either juveniles or females and when used in multiplex PCR reactions containing mixtures of other root‐knot nematode species, thus showing the sensitivity of the assay. Therefore, the method developed here has potential for application in routine diagnostic procedures.  相似文献   

17.
The socio-economic impact of Fusarium odoratissimum, which is colloquially called tropical race 4 (TR4), is escalating as this fungal pathogen spreads to new banana-growing areas. Hence, the development of simple, reliable and rapid detection technologies is indispensable for implementing quarantine measures. Here, a versatile loop-mediated isothermal amplification (LAMP) assay has been developed that is applicable under field and laboratory conditions. DNA markers unique to TR4 isolates were obtained by diversity arrays technology sequencing (DArTseq), a genotyping by sequencing technology that was conducted on 27 genotypes, comprising 24 previously reported vegetative compatibility groups (VCGs) and three TR4 isolates. The developed LAMP TR4 assay was successfully tested using 22 TR4 isolates and 45 non-target fungal and bacterial isolates, as well as on infected plants under greenhouse and field conditions. The detection limit was 1 pg µL−1 pure TR4 DNA or 102 copies plasmid-localized TR4 unique sequence (SeqA) per reaction, which was not affected by background DNA in complex samples. The LAMP TR4 assay offers a powerful tool for the routine and unambiguous identification of banana plants infected with TR4, contributing to advanced diagnosis in field situations and monitoring of fusarium wilt.  相似文献   

18.
In 2017, during a survey on subsistence farms and gardens in Coimbra region, Portugal, 40 infected root samples were collected and 47 root-knot nematode (RKN) isolates identified, based on esterase phenotype. The phenotypes A2, H1, Hi2/Hi4, I1/I2/I3 and J3 associated to five Meloidogyne species (M. arenaria, M. hapla, M. hispanica, M. incognita and M. javanica) were found in 43 RKN isolates. The esterase phenotype En2/En4/En5, corresponding to M. enterolobii (=M. mayaguensis), was detected in four RKN isolates from Cereus hildmannianus (Cactaceae), Lampranthus sp. (Aizoaceae), Physalis peruviana (Solanaceae) and Callistemon sp. (Myrtaceae) infected roots. In order to validate the biochemical identification of the M. enterolobii isolates, molecular studies performed with species-specific primers yielded the expected fragment of c.520 bp, and the amplification of cytochrome oxidase subunits I and II regions of 800 bp. The DNA sequences of one of the isolates were compared with available Meloidogyne species sequences in databases. The Portuguese isolate grouped with 99–100% bootstrap support with all M. enterolobii sequences included for comparison, confirming the presence of this RKN species in Portugal. In the EPPO region, M. enterolobii has been reported in France and Switzerland and intercepted in the Netherlands, Germany and the UK associated with plant material from Asia, South America and Africa. Taking into account the pathogen aggressiveness and its distribution, there is a high probability of its spread not only in the Mediterranean region but also in Europe, and of it becoming a threat to the agricultural economy, where there are no effective strategies for its control.  相似文献   

19.
A method was developed using a Loop-mediated isothermal amplification assay (LAMP) for detecting Didymella bryoniae in cucurbit seeds. The LAMP primers were designed based on the DNA-dependent RNA polymerase II RPB140 gene (RPB2) from D. bryoniae. Calcein was used as an indicator for the endpoint visual detection of DNA amplification. The LAMP assay was conducted in isothermal (65 °C) conditions within 1 h. The detection threshold of the LAMP assay was 10 pg of genomic DNA and D. bryoniae was detected in 100 % of artificially infested seedlots with 0.05 % infestation or greater. With the LAMP assay, 16 of 60 watermelon and muskmelon seedlots collected from Xinjang province were determined to be positive for D. bryoniae. In contrast, a real-time PCR assay determined that 11 of the 60 seedlots from Xinjiang province were positive for the pathogen. These results showed that the LAMP technique was simple, rapid and well suited for detecting D. bryoniae DNA, especially in seed health testing.  相似文献   

20.
香蕉条斑病毒LAMP快速检测方法的建立   总被引:1,自引:0,他引:1  
 环介导等温扩增(loop-mediated isothermal amplification,LAMP)是一种特异、灵敏、快速的新型基因检测技术。本研究以香蕉条斑病毒(Banana streak virus,BSV)ORF3保守区域为基础针对6个特定区域设计并筛选了4条LAMP扩增引物,通过对LAMP反应中MgSO4、dNTPs、Betaine等主要试剂浓度进行优化,建立了香蕉BSV的LAMP检测方法,63℃反应90 min后通过在反应产物中添加SYBR Green Ⅰ染料后颜色的变化,肉眼即可判断检测结果。LAMP具有极高的检测特异性和灵敏性,其检测下限约为3.2 ng·μL-1,是PCR检测灵敏度的25倍,能快速、准确地对疑似样品进行检测,本研究对华南地区部分疑似样品的检测结果显示LAMP阳性检出率比PCR检出率高。本文建立的BSV LAMP检测方法是对BSV检测方法的拓展和延伸,为香蕉病毒的快速检测提供技术保障。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号