首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
高油酸是花生重要的品质性状,高油酸花生及其制品具有较好的品质稳定性和较高的营养和保健价值。我国高油酸花生的育成品种类型较少,遗传背景不够丰富,育种手段比较单一。针对上述问题,本研究开发了AS-PCR-MP高油酸分子标记检测方法,优化了KASP分子标记检测体系,利用分子标记辅助连续回交,结合近红外品质快速检测技术及南繁加代技术,以河南省大面积推广的豫花15、远杂9102、豫花9327、豫花9326四个不同类型品种为轮回亲本, 5年内连续回交4代、自交4代,定向获得了4个轮回亲本遗传背景的BC4F4和BC4F5稳定高油酸改良材料24个。调查分析了BC4F4和BC4F5单株的13个农艺性状与轮回亲本的相似度,并利用轮回亲本与非轮回亲本之间的差异SNP的KASP分子标记进行了BC4F4和BC4F5株系的轮回亲本遗传背景检测。结果表明,轮回亲本的遗传背景在BC4F5的比例为79.49%~92.31%。本研究为快速高效改良花生油酸含量探索了新的方法,获得的新品系拓展了高油酸花生的遗传背景,获得的一系列近等基因系可作为遗传研究材料进一步加以利用。  相似文献   

2.
Summary Sunflower lines breeding true for very high oleic acid content in their oil (average levels higher than 85%) were crossed with standard sunflower lines with mean oleic acid levels of 30%. Analysis of the oil of F1 seeds indicated dominance for high oleic levels and control of the genotype of the embryo. Segregating generations were obtained selfing heterozygous high oleic BCnF1 plants from several generations of a backcrossing program to incorporate the high oleic character to standard inbred lines and testcrossing these plants to low oleic material. Analysis of F2 and testcrossed seeds showed three kind of segregations, in both F2 and testcrossed populations, with different proportions of low, intermediate and high oleic types. Genetic analysis of these data supported the hypothesis, that the high oleic character is controlled by three dominant complementary genes OL1, OL2 and OL3. Additional data showing F1 seeds with intermediate oleic content and segregations for high oleic in progenies of intermediate types, suggest the presence of major factors modifying high oleic acid content.  相似文献   

3.
4.
Forty accessions, forming a core collection of mainly bush type of the common bean (Phaseolus vulgaris L.) germplasm in the Netherlands, were evaluated for 14 qualitative and quantitative traits at the Agricultural University, Wageningen (WAU), the Netherlands in 1992. These and an additional 117 Dutch accessions, mainly collected in private home gardens, were also evaluated for phaseolin seed protein pattern, and morphological and agronomic traits at the International Center for Tropical Agriculture (CIAT, Spanish acronym), Cali, Columbia between 1987 and 1997. Multivariate and principal component analyses at both WAU and CIAT indicated existence of one large group with no discernable patterns among Dutch common bean collections of landraces, garden forms and cultivars. However, when phaseolin, an evolutionary, biochemical marker, was used as an initial classification criterion followed by use of morphological markers, the two major gene pools; Andean and Middle American with two races in each (Chile and Nueva Granada in Andean, and Durango and Mesoamerica in Middle American) were identified. The Andean gene pool was predominant (136 of 157 accessions), especially the race Nueva Granada (126 accessions) characterized by the bush determinate growth habit type I and T phaseolin. The new core collection comprised 31 accessions. Bean races Chile, Durango, and Mesoamerica were represented by 10, 7, and 14 accessions, respectively. Of the 9 French or snap bean accessions six possessed characteristics of race Mesoamerica and three belonged to Durango race. Occurrence of these and a large number of other recombinants strongly suggested considerable hybridization and gene exchange between Andean and Middle American gene pools, thus blurring the natural boundaries and forming a large single group of common bean germplasm in the Netherlands. The inter-gene-pool recombinants of both dry and French beans should be of special interest to breeders for use as bridging-parents for development of broad-based populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
[Objective] Here, the aim was to create a new cotton (Gossypium hirsutum L.) germplasm with high oleic acid and low linoleic acid contents without affecting the fiber yield and quality. [Method] The fatty acid desaturation 2-1 (FAD2-1) gene catalyzes the formation of polyunsaturated linoleic acid from monounsaturated fatty acid in cotton. The protein’s properties, structure and functions were analyzed using the information analysis method. A conserved 381-bp fragment of GhFAD2-1 was cloned to construct an RNA interference vector, which was transformed into cotton by Agrobacterium-mediated hypocotyl infection. The fatty acid compositions and contents of T2―T4 transgenic plants were determined using gas chromatography-mass spectrometry. The T4 transgenic lines were used to investigate the copy number, target gene expression, agronomic traits, and fiber quality. [Results] The RNA interference vector of GhFAD2-1 was successfully constructed and transformed into cotton. The target gene’s expression level was significantly lower in transgenic plants than in controls. The transgenic plants had high oleic acid and low linoleic acid contents, which could be stably inherited by the offspring. The oleic acid contents of transgenic cotton seeds increased by 224.1%, and the linoleic acid content decreased by 237.5%, compared with the control seeds. There were no significant differences in the agronomic traits and fiber quality of the transgenic lines compared with the control. [Conclusion] These results verified the function of GhFAD2-1 in cotton and provide a basis for breeding cotton varieties with high oleic acid contents.  相似文献   

6.
Summary Two hundred safflower accessions, originated in 37 countries, and multiplied in two environments, were evaluated for fatty acid composition of the seed oil and other seed characters. Overall mean values of stearic and palmitic acids were similar in both environments but differed for seed weight and oil content. Oleic and linoleic acids showed also similar overall mean content in both environments but some entries with intermediate contents of these acids displayed significant variation among environments. Oleic and linoleic acids showed a tremendous range of variation, from 3.1 to 90.60% and from 3.9 to 88.8%, respectively. The ranges of variation observed for stearic, oleic and linoleic acids indicate that all the reccessive genes, already discovered, controlling high content of these acids, st, ol and li, are present in the collection. Moreover, the upper values of oleic, ten points higher than the published values for the high oleic genotype olol, suggest than other genes controlling such levels may be present.  相似文献   

7.
Phytic acid (PA) is the storage form of phosphorus (P) in seeds and plays an important role in the nutritional quality of food crops. There is little information on the genetics of seed and seedling PA in mungbean [Vigna radiata (L.) Wilczek]. Quantitative trait loci (QTL) were identified for phytic acid P (PAP), total P (TP), and inorganic P (IP) in mungbean seeds and seedlings, and for flowering, maturity and seed weight, in an F2 population developed from a cross between low PAP cultivated mungbean (V1725BG) and high PAP wild mungbean (AusTRCF321925). Seven QTLs were detected for P compounds in seed; two for PAP, four for IP and one for TP. Six QTLs were identified for P compounds in seedling; three for PAP, two for TP and one for IP. Only one QTL co-localized between P compounds in seed and seedling suggesting that low PAP seed and low PAP seedling must be selected for at different QTLs. Seed PAP and TP were positively correlated with days to flowering and maturity, indicating the importance of plant phenology to seed P content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号