首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of accurate calibration models for selected soil properties is a crucial prerequisite for successful implementation of visible and near infrared (Vis‐NIR) spectroscopy for soil analysis. This paper compares the performance of calibration models developed for individual farms with that of general models valid for three farms in three European countries. Fresh soil samples collected from farms in the Czech Republic, Germany and Denmark were scanned with a fibre‐type Vis‐NIR spectrophotometer. After dividing spectra into calibration (70%) and validation (30%) sets, spectra in the calibration set were subjected to partial least squares regression (PLSR) with leave‐one‐out cross‐validation to establish calibration models of soil properties. Except for the Czech Republic farm, individual farm models provided successful calibration for total carbon (TC), total nitrogen (TN) and organic carbon (OC), with coefficients of determination (R2) of 0.85–0.93 and 0.74–0.96 and residual prediction deviations (RPD) of 2.61–3.96 and 2.00–4.95 for the cross‐validation and independent validation respectively. General calibration models gave improved prediction accuracies compared with models of farms in the Czech Republic and Germany, which was attributed to larger ranges in the variation of soil properties in general models compared with those in individual farm models. The results revealed that larger standard deviations (SDs) and wider variation ranges have resulted in larger R2 and RPD, but also larger root mean square errors of prediction (RMSEP). Therefore, a compromise solution, which also results in small RMSEP values, should be found when selecting soil samples for Vis‐NIR calibration to cover a wide variation range.  相似文献   

2.
We need to determine the best use of soil vis–NIR spectral libraries that are being developed at regional, national and global scales to predict soil properties from new spectral readings. To reduce the complexity of a calibration dataset derived from the Chinese vis–NIR soil spectral library (CSSL), we tested a local regression method that combined geographical sub‐setting with a local partial least squares regression (local‐PLSR) that uses a limited number of similar vis–NIR spectra (k‐nearest neighbours). The central idea of the local regression, and of other local statistical approaches, is to derive a local prediction model by identifying samples in the calibration dataset that are similar, in spectral variable space, to the samples used for prediction. Here, to derive our local regressions we used Euclidean distance in spectral space between the calibration dataset and prediction samples, and we also used soil geographical zoning to account for similarities in soil‐forming conditions. We tested this approach with the CSSL, which comprised 2732 soil samples collected from 20 provinces in the People's Republic of China to predict soil organic matter (SOM). Results showed that the prediction accuracy of our spatially constrained local‐PLSR method (R2 = 0.74, RPIQ = 2.6) was better than that from local‐PLSR (R2 = 0.69, RPIQ = 2.3) and PLSR alone (R2 = 0.50, RPIQ = 1.5). The coupling of a local‐PLSR regression with soil geographical zoning can improve the accuracy of local SOM predictions using large, complex soil spectral libraries. The approach might be embedded into vis–NIR sensors for laboratory analysis or field estimation.  相似文献   

3.
Near-infrared (NIR) spectroscopy is a rapid, non-destructive and accurate technique for analyzing a wide variety of samples, thus, the growing interest of using this technique in soil science. The objective of this study was to evaluate the potential of NIR spectroscopy to predict organic carbon (OC), total nitrogen (TN), available phosphorus (P) and available potassium (K) in the soil. NIR spectra from 20 cm3 of soil samples were acquired on the range of 750 to 2500 nm in diffuse reflectance mode, resolution of 16 cm?1 and 64 scans. Eight models of calibration/validation were constructed. Calibration and validation models showed that the predictive potential of NIR varied with the specific soil property (OC, TN, P and K) under evaluation and according to the methodology employed in the model construction (cross-validation or test set). Good prediction models were obtained for OC and TN content based on the statistical parameters. Test set methodology was able to predict soil OC, TN, P, and K better than cross-validation methodology.  相似文献   

4.
We investigate the potential of near-infrared (NIR) spectroscopy to predict some heavy metals content (Zn, Cu, Pb, Cr and Ni) in several soil types in Stara Zagora Region, South Bulgaria, as affected by the size of calibration set using partial least squares (PLS) regression models. A total of 124 soil samples from the 0–20 and 20–40 cm layers were collected from fields with different cropping systems. Total Zn, Cu, Pb, Cr and Ni concentrations were determined by Atomic Absorption Spectrometry. Spectra of air dried soil samples were obtained using an FT-NIR Spectrometer (spectral range 700–2,500 nm). PLS calibration models were developed with full-cross-validation using calibration sets of 90 %, 80 %, 70 % and 60 % of the 124 samples. These models were validated with the same prediction set of 12 samples. The validation of the NIR models showed Cu to be best predicted with NIR spectroscopy. Less accurate prediction was observed for Zn, Pb and Ni, which was classified as possible to distinguish between high and low concentrations and as approximate quantitative. The worst model performance in cross-validation and prediction was for Cr. Results also showed that values of root mean square error in cross-validation (RMSEcv) increased with decreasing number of samples in calibration sets, which was particularly clear for Cu, Pb, Ni and Cr content. A similar tendency was observed in the prediction sets, where RMSEP values increased with a decrease in the number of samples, particularly for Pb, Ni and Cr content. This tendency was not clear for Zn, while even an increase in RMSEP for Cu with the sample size was observed. It can be concluded that NIR spectroscopy can be used to measure heavy metals in a sample set with different soil type, when sufficient number of soil samples (depending on variability) is used in the calibration set.  相似文献   

5.
Effective agricultural planning requires basic soil information. In recent decades visible near‐infrared diffuse reflectance spectroscopy (vis‐NIR) has been shown to be a viable alternative for rapidly analysing soil properties. We studied 7172 samples of seven different soil types collected from several regions of Brazil and varying in organic matter (OM) (0.2–10.3%) and clay content (0.2–99.0%). The aim was to explore the possibility of enhancing the performance of vis‐NIR data in predicting organic matter and clay content in this library by dividing it into smaller sub‐libraries on the basis of their vis‐NIR spectra. We used partial least square regression (PLSR) models on the sub‐libraries and compared the results with PLSR and two non‐linear calibration techniques, boosted regression trees (BT) and support vector machines (SVM) applied to the whole library. The whole library calibrations for clay performed well (ME (modelling efficiency) > 0.82; RMSE (root mean squared error) < 10.9%), reflecting the influence of the direct spectral responses of this property in the vis‐NIR range. Calibrations for OM were reasonably good, especially in view of the very small variation in this property (ME > 0.60; RMSE < 0.55%). The best results were, however, found when dividing the large library into smaller subsets by using variation in the mean‐normalized or first derivative spectra. This divided the global data set into clusters that were more uniform in mineralogy, regardless of geographical origin, and improved predictive performance. The best clustering method improved the RMSE in the validation to 8.6% clay and 0.47% OM, which corresponds to a 21% and 15% reduction, respectively, as compared with whole library PLSR. For the whole library, SVM performed almost equally well, reducing RMSE to 8.9% clay and 0.48% OM.  相似文献   

6.
Reducing large spectral datasets to parsimonious representations of wavelengths is of value for efficient storage and easing analysis, in addition to the potential to use a simpler and cheaper spectrophotometer. This study evaluated the potential of calibrating visible and near infrared (vis‐NIR) spectra to total nitrogen (N), total carbon (C), organic C and inorganic C in soil on a 15‐ha farm, with the aim of comparing several wavelength reduction algorithms and rates in terms of model prediction accuracy. We explored the uninformative variables elimination (UVE), UVE coupled with successive projections algorithm (SPA) and two uniform‐interval wavelength reduction approaches (UWR‐I and UWR‐II) with successive wavelength reduction rates (WRRs) of 2, 5, 10, 20, 50, 100, 200, 500 and 1000. The standard normal variate (SNV)‐transformed absorbance spectra of soil samples recorded from 400 to 2499 nm at 1‐nm intervals were used. The calibration sets were subjected to a partial least squares regression (PLSR) with leave‐one‐out cross‐validation. Prediction results showed that UVE can reduce wavelength variables significantly while retaining good model prediction accuracy. The UVE‐SPA produced only three or four wavelengths, with which PLSR models achieved competitive prediction performance, compared with those based on all 2100 wavelengths, with coefficient of determination (R2) of 0.91, 0.89, 0.91 and 0.53 and residual prediction deviation (RPD) of 3.53, 2.95, 3.27 and 1.53 for soil total N, total C, organic C and inorganic C, respectively. The UWR tests showed that PLSR models responded insensitively to various WRRs from 2 to 100. The models calibrated for the 100‐nm interval spectra (21 remaining wavelengths) performed almost as well as those for the 1‐nm interval spectra. Although these findings might be valid only at the farm scale, it is recommended that the proposed wavelength reduction algorithms for more soil types and soils originated from larger areas should be examined.  相似文献   

7.
The potential of VIS‐NIR spectroscopy as a rapid screening method for resistance of Fusarium‐inoculated oats to replace the costly chemical measurements of deoxynivalenol (DON) was investigated. Partial least squares (PLS) regression was conducted on second‐derivative spectra (400–2,350 nm) of 166 DON‐contaminated samples (0.05–28.1 ppm, mean = 13.06 ppm) with separate calibration and test set samples. The calibration set had 111 samples, and the test set had 55 samples. The best model developed had three PLS components and a root mean square error of prediction (RMSEP) of 3.16 ppm. The residual predictive deviation (RPD) value of the prediction model was 2.63, an acceptable value for the purpose of rough screening. Visual inspection and the VIS spectra of the samples revealed that high‐DON samples tended to be darker in color and coarser in texture compared with low‐DON samples. The second‐derivative spectra showed that low‐DON samples tended to have more water and fat content than high‐DON samples. With an RMSEP value of 3.16 and RPD of value of 2.63, it seems possible to use VIS‐NIR spectroscopy to semiquantitatively estimate DON content of oats and discard the worst genotypes during the early stages of screening.  相似文献   

8.
The advantage of using near‐infrared spectroscopy to increase sample point density in soil mapping on farms relies on the number of conventional laboratory analyses for the calibrations being kept to a minimum. This study compared the performance of small farm‐scale calibrations (25 samples) with a larger national soil library (396 samples) and tested whether a site‐specific sample set selected from the national library, consisting of the 50 samples that were spectrally most similar to those of the local sites, could increase performance. In addition, the national library and selected subsets were augmented (‘spiked’) with up to 25 local calibration samples to test whether that had any additional effect on prediction errors and bias. Calibrations were made for predicting within‐field variation in clay, silt, sand, soil organic carbon (SOC), pH and phosphorus. Selecting a subset of samples from the national library did not improve the results compared with using the entire national library. However, spiking both libraries with local samples reduced the root mean squared error of prediction (RMSEP) considerably, mainly through a decrease in bias, and often resulted in comparable results to the local calibrations. There was a tendency for better clay and SOC predictions from spiking a reduced national library compared with spiking the entire national library, sometimes even resulting in better predictions than using the local calibrations. However, using local calibrations seems to be the best alternative for predicting soil properties at the farm or field scale, even with as few as 25 samples.  相似文献   

9.
为了提高中国厚皮类瓜果的品质质量和出口能力,增强中国水果品质检测装备制造业的技术实力和技术水平。该文以西瓜为对象,对其糖度进行了试验研究。由于西瓜各部位存在差异,因而不同部位采集近红外光谱会对糖度预测模型精度产生影响。采用自主搭建的西瓜内部品质检测系统对不同批次西瓜瓜梗、瓜脐和赤道3个部位采集漫透射光谱信息,分别采用偏最小二乘回归法(partial least squares regression,PLSR)和最小二乘支持向量机法(least squares support vector machines,LS-SVM)2种方法对西瓜糖度建立预测模型,考察西瓜不同检测部位对西瓜糖度预测模型精度的影响。2种预测模型均显示,赤道部位采集光谱所建立的预测模型检测精度较差,而采用瓜脐部位获取光谱信息建立预测模型略好于瓜梗部位,最佳预测相关系数rpre达到0.823,预测均方根误差(root mean square error of prediction,RMSEP)为0.652%。该研究结果表明,不同部位采集光谱信息对最终的检测模型精度有影响,瓜脐部位为该文西瓜内部品质检测装置的较优采集部位。  相似文献   

10.
不同品种间的猪肉含水率高光谱模型传递方法研究   总被引:1,自引:1,他引:0  
针对目前的模型传递方法研究大多为不同仪器间的近红外光谱模型传递,该文采用高光谱技术建立猪肉含水率定量检测模型,并针对不同品种间的模型传递提出了一种分段直接校正结合线性插值(piecewise direct standardization combine with linear interpolation,PDS-LI)的传递算法。以杜长大、茂佳山黑猪和零号土猪3个品种为研究对象,以杜长大作为主品种,茂佳山黑猪和零号土猪作为从品种,采用偏最小二乘回归(partial least squares regression,PLSR)法建立猪肉含水率主模型,经PDS-LI算法对主模型进行传递后,主模型对茂佳山黑猪和零号土猪样品的预测决定系数R2p分别由传递前的0.263和0.507提高到0.832和0.848,预测均方根误差分别由传递前的1.151%和0.857%降低到0.470%和0.440%,剩余预测偏差(residual prediction deviation,RPD)分别由传递前的1.000和1.214提高到2.447和2.364。结果表明,PDS-LI传递算法能够实现杜长大对茂佳山黑猪和零号土猪样品的模型传递。研究结果为提高猪肉含水率模型适配性问题提供参考。  相似文献   

11.
The objective of this study was to develop a near‐infrared (NIR) imaging system to determine rice moisture content. The NIR imaging system fitted with 15 band‐pass filters (wavelengths of 870–1,014 nm) was used to capture the spectral image. In this work, calibration methods including multiple linear regression (MLR), partial least squares regression (PLSR), and artificial neural network (ANN) were used in both near‐infrared spectrometry (NIRS) and the NIR imaging system to determine the moisture content of rice. Comprehensive performance comparison among MLR, PLSR, and ANN approaches has been conducted. To reduce repetition and redundancy in the input data and obtain a more accurate network, six significant wavelengths selected by the MLR model, which had high correlation with the moisture content of rice, were used as the input data of the ANN. The performance of the developed system was evaluated through experimental tests for rice moisture content. This study adopted the coefficient of determination (rval2), the standard error of prediction (SEP), and the relative performance determinant (RPD) as the performance indices of the NIR imaging system with respect to the tests of rice moisture content. Utilizing these three models, the analysis results of rval2, SEP, and RPD for the validation set were within 0.942–0.952, 0.435–0.479%, and 4.2–4.6, respectively. From experimental results, the performance of NIR imaging system was almost the same as that of NIRS. Using the developed NIR imaging system, all of the three different calibration methods (MLR, PLSR, and ANN) provided a high prediction capacity for the determination of moisture in rice samples. These results indicated that the NIR imaging system developed in this study can be used as a device for the measurement of rice moisture content.  相似文献   

12.
土壤有机质含量可见-近红外光谱反演过程中校正集的构建策略对模型的预测精度有重要影响。以江汉平原洪湖地区水稻土为研究对象,采用Kennard-Stone(KS)法,Rank-KS(RKS)和Sample set Partitioning based on joint X-Y distance(SPXY)法,构建样本数占总校正集不同比例的子校正集,通过偏最小二乘回归,建立土壤有机质含量的可见—近红外光谱反演模型。结果表明:KS法无法提高模型预测精度,但可以在保证标准差与预测均方根误差比(ratio of performance to standard deviation,RPD)2.0的前提下减少30%的校正样本;基于SPXY法的模型,当子校正集样本比例为总校正集的50%时达到最佳的模型预测精度,RPD为2.557;RKS法能够在保证预测精度的情况下(RPD2.0),最多减少总校正集70%的样本,对应模型RPD为2.212。当校正集与验证集的有机质含量分布相近时,能够以较少的建模样本达到与总校正集相近甚至更高的模型预测精度,提升土壤有机质光谱反演模型的实用性。  相似文献   

13.
Diffuse reflectance spectroscopy using visible (vis), near‐infrared (NIR) and mid‐infrared (mid‐IR) energy can be a powerful tool to assess and monitor soil quality and function. Mathematical pre‐processing techniques and multivariate calibrations are commonly used to develop spectroscopic models to predict soil properties. These models contain many predictor variables that are collinear and redundant by nature. Partial least squares regression (PLSR) is often used for their analysis. Wavelets can be used to smooth signals and to reduce large data sets to parsimonious representations for more efficient data storage, computation and transmission. Our aim was to investigate their potential for the analyses of soil diffuse reflectance spectra. Specifically we wished to: (i) show how wavelets can be used to represent the multi‐scale nature of soil diffuse reflectance spectra, (ii) produce parsimonious representations of the spectra using selected wavelet coefficients and (iii) improve the regression analysis for prediction of soil organic carbon (SOC) and clay content. We decomposed soil vis‐NIR and mid‐IR spectra using the discrete wavelet transform (DWT) using a Daubechies’s wavelet with two vanishing moments. A multiresolution analysis (MRA) revealed their multi‐scale nature. The MRA identified local features in the spectra that contain information on soil composition. We illustrated a technique for the selection of wavelet coefficients, which were used to produce parsimonious multivariate calibrations for SOC and clay content. Both vis‐NIR and mid‐IR data were reduced to less than 7% of their original size. The selected coefficients were also back‐transformed. Multivariate calibrations were performed by PLSR, multiple linear regression (MLR) and MLR with quadratic polynomials (MLR‐QP) using the spectra, all wavelet coefficients, the selected coefficients and their back transformations. Calibrations by MLR‐QP using the selected wavelet coefficients produced the best predictions of SOC and clay content. MLR‐QP accounted for any nonlinearity in the data. Transforming soil spectra into the wavelet domain and producing a smaller representation of the data improved the efficiency of the calibrations. The models were computed with reduced, parsimonious data sets using simpler regressions.  相似文献   

14.
15.
基于近红外光谱和支持向量机的土壤参数预测   总被引:7,自引:5,他引:2  
应用支持向量机算法对实时土壤光谱数据进行处理,获得了土壤全氮和有机质的回归模型并研究了模型随参数变化的规律。从中国农业大学试验田采集了150个土样,用光谱仪获取了原始土壤样本的近红外光谱,用实验室分析法获取了各样本的全氮和有机质含量。以近红外光谱数据为自变量对2个土壤参数进行了回归建模并评价了算法各参数对模型的影响。研究表明土壤参数适合于全谱支持向量回归。对于土壤全氮,基于小波降噪NIR光谱的SVM回归模型的标定R2为0.9224,验证R2为0.3667;对于土壤有机质,基于原始NIR光谱的SVM回归模型  相似文献   

16.
可见/近红外光谱技术无损检测果实坚实度的研究   总被引:9,自引:2,他引:7  
该研究的目的是建立可见/近红外光谱与梨果实坚实度之间的数学模型,评价可见/近红外光谱技术无损测量梨果实坚实度的应用价值.在可见/近红外光谱区域(350~1800nm),试验对比分析了不同测量部位、不同光谱预处理方法和不同校正建模算法的梨果实坚实度校正模型.结果表明:赤道部位吸光度一阶微分光谱的偏最小二乘回归所建梨果实坚实度校正模型的预测性能较优,其校正和预测相关系数分别为0.8779和0.8087,校正和预测均方误差分别为1.0804N和1.4455N.研究表明:可见/近红外光谱技术无损检测梨果实坚实度是可行的.  相似文献   

17.
玉米灌浆期含水率测定是考种育种的重要指标。为了节约样本且快速准确测定灌浆期玉米水分,该文应用近红外光谱技术,提出了基于小样本条件下的自举算法(Bootstrap)与基于x-y距离结合的样本划分方法(SPXY,sample set partitioning based on joint x-y distances)相结合的样本优化方法的偏最小二乘(PLS,partial least square)水分定量分析模型Bootstrap-SPXY-PLS模型。试验结果表明,当Bootstrap重抽样本次数等于500,样本数量大于等于10时,模型的性能稳定,并且随着样本数量增加,重抽样本次数相对减少;样本数量为10和50时,全谱Bootstrap-SPXY-PLS模型的预测均方根误差(RMSEP,root-mean-square error of prediction)均值分别为0.38%和0.40%,预测相关系数(correlation coefficients of prediction)分别为0.975 1和0.968 5,决定系数R~2分别为0.999 9和0.993 6;基于竞争性自适应重加权采样算法(CARS,competitive adaptive reweighed sampling)波长变量筛选后的CARS-Bootstrap-SPXY-PLS模型的预测均方根误差RMSEP均值分别为0.36%和0.35%,预测相关系数分别为0.973 6和0.975 0,模型决定系数R~2分别为0.924 5和0.918 0。因此,全谱Bootstrap-SPXY-PLS模型和CARS-Bootstrap-SPXY-PLS模型均具有稳定的预测能力,为玉米育种时灌浆期种子水分测定提供了一种稳定、高效的方法。  相似文献   

18.
High cost and painstaking procedures associated with fatty acid analyses of maize kernel necessitate the use of alternative methods. NIR spectroscopy offers advantages in this respect for a variety of areas such as plant breeding, food and feed industries, and biofuel production, in which different forms of maize kernel (e.g., intact kernel, flour, or oil) are used as material. We investigated the possibility of estimating maize oil quality traits by using different samples (intact kernel, flour, and oil) and conventional regression methods (multiple linear regression [MLR] and partial least squares regression [PLSR]) applied to their NIR spectra. MLR and PLSR calibration models were developed for oleic acid, linoleic acid, oleic/linoleic acid ratios, total monounsaturated fatty acid, total polyunsaturated fatty acid (PUFA), and total saturated fatty acid by analyzing 120 maize samples. Robustness in terms of prediction accuracy of the models developed here was tested with a reserved set of samples (n = 30). The results suggested that fatty acids could be possibly estimated by calibrations developed from flour and oil samples with a high degree of accuracy, whereas intact samples did not offer satisfactory results. PLSR and MLR methods gave better results in flour and oil samples, respectively. PUFA was the trait that was most successfully estimated from both flour (for the PLSR model, standard error of the estimate [SEP] of 1.78%, relative performance to deviation [RPD] of 3.09, R2 = 0.93) and oil (for the MLR model, SEP of 0.85%, RPD of 6.52, R2 = 0.98) samples. We concluded that sample type and chemometric method should be handled as important factors in calibration development, and the effects of these factors may vary depending on the trait being analyzed.  相似文献   

19.
脂肪作为一种重要的品质参数,在大西洋鲑鱼片中的分布很不均匀。为寻找一种能替代脂肪化学检测的快速无损的方法,该研究应用可见/近红外高光谱成像测定大西洋鲑鱼片的脂肪含量分布。分别采用可见/短波近红外(400-1100 nm)和近红外(900-1700 nm)系统获取大西洋鲑鱼片样本的高光谱图像。提取样本图像的平均光谱并与其相应的脂肪含量化学值采用偏最小二乘回归(partial least squares regression,PLSR)和最小二乘支持向量机(least-squares support vector machines,LS-SVM)建立相关性模型。为降低高光谱图像的共线性和冗余度,基于竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)分别在可见/短波近红外和近红外光谱区间提取16个(468,479,728,734,785,822,863,890,895,899,920,978,1005,1033,1040,1051 nm)和15个(975,995,1023,1047,1095,1124,1167,1210,1273,1316,1354,1368,1575,1632,1661 nm)特征波长,并分别建立PLSR和LS-SVM模型。特征波长模型的性能优于全波段模型,且近红外区间的特征波长PLSR模型为最优,预测决定系数(R2p)为0.92,预测均方根误差(root mean square error of prediction,RMSEP)为0.92%,剩余预测偏差(residual predictive deviation,RPD)为3.50。最后,将最优模型用于预测高光谱图像上所有像素点的脂肪含量以展示样本上脂肪的分布。此外,还基于该技术对大西洋鲑整鱼片实现了脂肪分布可视化。结果表明高光谱成像技术结合化学计量学方法在大西洋鲑鱼片脂肪的定量和分布可视化上有一定的研究和应用前景。  相似文献   

20.
The capture and storage of soil organic carbon (OC) should improve the soil's quality and function and help to offset the emissions of greenhouse gases. However, to measure, model or monitor changes in OC caused by changes in land use, land management or climate, we need cheaper and more practical methods to measure it and its composition. Conventional methods are complex and prohibitively expensive. Spectroscopy in the visible and near infrared (vis–NIR) is a practical and affordable alternative. We used samples from Australia's Soil Carbon Research Program (SCaRP) to create a vis–NIR database with accompanying data on soil OC and its composition, expressed as the particulate, humic and resistant organic carbon fractions, POC, HOC and ROC, respectively. Using this database, we derived vis–NIR transfer functions with a decision‐tree algorithm to predict the total soil OC and carbon fractions, which we modelled in units that describe their concentrations and stocks (or densities). Predictions of both carbon concentrations and stocks were reliable and unbiased with imprecision being the main contributor to the models' errors. We could predict the stocks because of the correlation between OC and bulk density. Generally, the uncertainty in the estimates of the carbon concentrations was smaller than, but not significantly different to, that of the stocks. Approximately half of the discriminating wavelengths were in the visible region, and those in the near infrared could be attributed to functional groups that occur in each of the different fractions. Visible–NIR spectroscopy with decision‐tree modelling can fairly accurately, and with small to moderate uncertainty, predict soil OC, POC, HOC and ROC. The consistency between the decision tree's use of wavelengths that characterize absorptions due to the chemistry of soil OC and the different fractions provides confidence that the approach is feasible. Measurement in the vis–NIR range needs little sample preparation and so is rapid, practical and cheap. A further advantage is that the technique can be used directly in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号