首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyprinid herpesvirus 3 (CyHV‐3) is an alloherpesvirus, and it is the aetiological agent of koi herpesvirus disease. Although the complex morphogenic stages of the replication cycle of CyHV‐3 were shown to resemble that of other members of the Herpesvirales, detailed analysis of the sequence and timing of these events was not definitively determined. This study describes these features through a time course using cyprinid cell cultures (KF‐1 and CCB) infected with CyHV‐3 (KHV isolate, H361) and analysed by transmission electron microscopy. Rapid viral entry was noted, with high levels of intracellular virus within 1–4 h post‐infection (hpi). Intranuclear capsid assembly, paracrystalline array formation and primary envelopment of capsids occurred within 4 hpi. Between 1 and 3 days post‐infection (dpi), intracytoplasmic secondary envelopment occurred, as well as budding of infectious virions at the plasma membrane. At 5–7 dpi, the cytoplasm contained cytopathic vacuoles, enveloped virions within vesicles, and abundant non‐enveloped capsids; also there was frequent nuclear deformation. Several morphological features are suggestive of inefficient viral assembly, with production of non‐infectious particles, particularly in KF‐1 cells. The timing of this alloherpesvirus morphogenesis is similar to other members of the Herpesvirales, but there may be possible implications of using different cell lines for CyHV‐3 propagation.  相似文献   

2.
A challenge model for pancreas disease in Atlantic salmon, Salmo salar L. fry, was developed comparing two salmonid alphavirus (SAV) subtypes: SAV1 and SAV5. Viral doses of 3 × 105 TCID50 mL−1 for SAV1 and 3 × 104 for SAV5 were tested in triplicate tanks, each containing 450 salmon fry. Cumulative mortalities of 1.2% were recorded. Titres of virus recovered from the mortalities ranged from 102 to 107 TCID50 mL−1. Fry were sampled at 3, 5 and 7.5 weeks post-challenge. Sampling after 3 weeks revealed a high prevalence of infection in the absence of clinical signs, and infectious virus was recovered from 80% and 43% of sampled fry infected with SAV1 and SAV5, respectively. After 5 weeks pancreas, heart and red skeletal muscle lesions were generally observed, whilst degeneration in white skeletal muscle was observed only in fish infected with SAV1. In situ hybridisation confirmed the presence of viral genome in infected pancreas, heart and muscle. After 7.5 weeks, infectious virus (both isolates) was recovered from 13.3% of the fish sampled, with a viral titre of 102 TCID50 mL−1. Clearly, salmon fry are susceptible to SAV infection and pancreas disease.  相似文献   

3.
The RIG‐I receptors RIG‐I, MDA5 and LGP2 are involved in viral recognition, and they have different ligand specificity and recognize different viruses. Activation of RIG‐I‐like receptors (RLRs) leads to production of cytokines essential for antiviral immunity. In fish, most research has focused on interferons, and less is known about the production of proinflammatory cytokines during viral infections. In this study, we have cloned the full‐length MDA5 sequence in Atlantic salmon, and compared it with RIG‐I and LGP2. Further, the salmonid cell line TO was infected with three fish pathogenic viruses, infectious pancreatic necrosis virus (IPNV), infectious salmon anaemia virus (ISAV) and salmonid alphavirus (SAV), and differential gene expression (DEG) analyses of RLRs, interferons (IFNa‐d) and proinflammatory cytokines (TNF‐α1, TNF‐α2, IL‐1β, IL‐6, IL‐12 p40s) were performed. The DEG analyses showed that the responses of proinflammatory cytokines in TO cells infected with IPNV and ISAV were profoundly different from SAV‐infected cells. In the two aforementioned, TNF‐α1 and TNF‐α2 were highly upregulated, while in SAV‐infected cells these cytokines were downregulated. Knowledge of virus recognition by the host and the immune responses during infection may help elucidate why and how some viruses can escape the immune system. Such knowledge is useful for the development of immune prophylactic measures.  相似文献   

4.
Macrobrachium rosenbergii nodavirus (MrNV) that causes white tail disease (WTD) is an emerging disease that contributes to serious production losses in Macrobrachium hatcheries worldwide. Mosquito cell lines (C6/36) have been reported to support the growth of MrNV and used to observe the cytopathic effects (CPE) in infected cells. This study determined the susceptibility of C6/36 mosquito cells to the Australian isolate of MrNV in order to use fewer animals in further investigations. Different staining methods were used to observe MrNV viral activity in C6/36 cells. Typical cytopathic effects such as vacuolation and viral inclusion bodies were observed in infected C6/36 cells with H&E and Giemsa staining. With acridine orange, it was easier to detect presumptive MrNV messenger ribonucleic acid in the infected cells. Using neutral red staining to measure mitochondrial activity showed light absorption of infected cells maximized at day 4 (O.D. = 0.6) but was significantly lower (chi‐square = 41.265, df = 1, P < 0.05) than control groups (O.D. = 2) which maximized at day 12. Using trypan blue staining to count the number of cells with disrupted cell membranes, the maximum number of presumptively dead cells at day 8 (4 × 105 cells) in infected treatments was higher than the control treatment at day 10 (1.8 × 105 cells). However, TaqMan real‐time PCR did not confirm the replication of MrNV in the cells over 14 days. The mean viral copies and mean cycle times of positive samples were stable at 2.07 × 104 and 24.12, respectively. Limited evidence of viral replication was observed during four serial passages. This study determined the mortality of the C6/36 cell line to the Australian isolate of MrNV but suggests limited patent replication was occurring. Trying different cell lines or adapting the virus to the C6/36 cells may be necessary to successfully replicate Australian MrNV in cell lines.  相似文献   

5.
6.
This research was initiated in conjunction with a systematic, multiagency surveillance effort in the United States (U.S.) in response to reported findings of infectious salmon anaemia virus (ISAV) RNA in British Columbia, Canada. In the systematic surveillance study reported in a companion paper, tissues from various salmonids taken from Washington and Alaska were surveyed for ISAV RNA using the U.S.‐approved diagnostic method, and samples were released for use in this present study only after testing negative. Here, we tested a subset of these samples for ISAV RNA with three additional published molecular assays, as well as for RNA from salmonid alphavirus (SAV), piscine myocarditis virus (PMCV) and piscine orthoreovirus (PRV). All samples (n = 2,252; 121 stock cohorts) tested negative for RNA from ISAV, PMCV, and SAV. In contrast, there were 25 stock cohorts from Washington and Alaska that had one or more individuals test positive for PRV RNA; prevalence within stocks varied and ranged from 2% to 73%. The overall prevalence of PRV RNA‐positive individuals across the study was 3.4% (77 of 2,252 fish tested). Findings of PRV RNA were most common in coho (Oncorhynchus kisutch Walbaum) and Chinook (O. tshawytscha Walbaum) salmon.  相似文献   

7.
A new cell line (TSHC) derived from heart tissues was established from female half‐smooth tongue sole (Cynoglossus semilaevis), an economically important marine fish species in China. The cell line had been subcultured for more than 30 times over a period of 200 days. The cell line was optimally maintained at 24°C in minimum essential medium (MEM) medium containing foetal bovine serum (FBS), 2‐mercaptoethanol (2‐Me), sodium pyruvate, basic fibroblast growth factor (bFGF) and antibiotics. The TSHC cells were mostly composed of fibroblast‐like cells. Chromosome analysis revealed that the TSHC cell line had a normal diploid karyotype with 2n = 42, containing the heterogametic W chromosome. The TSHC cell line was susceptible to infection by flounder Lymphocystis disease virus (LCDV). Although an atypical cytopathic effect and only few of virus particles in the cytoplasm was observed, it provides a research material on the cell–pathogen interaction research about the viral infection of non‐host species.  相似文献   

8.
Infectious salmon anaemia (ISA), caused by ISA virus (ISAV), is a serious disease of farmed Atlantic salmon, Salmo salar L. Recently, molecular‐ and immunofluorescent‐based techniques have become powerful diagnostic tools for ISAV detection, but culture‐based techniques remain the gold standard. A disadvantage of ISAV culture is that the incubation time required before cytopathic effect (CPE) is observed in cell monolayers. To decrease time until CPE is observed, a low‐speed centrifugation technique was applied to existing standard operating procedures for ISAV culture in three fish cell lines. Time until CPE observation was compared in CHSE, SHK and ASK cells, treated or not treated with low‐speed centrifugation after inoculation with ISAV. Low‐speed centrifugation treatment significantly enhanced observable cell infection. Compared to control cells, the length of time until ISAV CPE observation decreased in centrifuged ASK and CHSE cells. Low‐speed centrifugation was also incorporated into a modified clinical shell vial assay. At 48 h post‐inoculation with approximately 20 viral particles, ISAV was detected by an immunofluorescence antibody test in treated ASK and SHK1 cells but not in control cells. Finally, this enhanced viral adsorption assay performed in ASK cells demonstrated higher sensitivity than a real‐time RT‐PCR assay performed on RNA isolated from ISAV‐spiked salmon kidney homogenates.  相似文献   

9.
A new viral agent was found associated with the endoplasmic reticulum of epithelial cells of the Pacific white shrimp Litopenaeus vannamei (Boone) sampled during mass mortalities. A 40% mortality rate affected nursery and grow‐out ponds during the first 50–60 days of culture, and peak mortality in ponds occurred when shrimp reached 2–4 g. Histopathological changes of affected shrimp showed different grades of necrosis in epithelial cells and, in some cases, other tissues were affected. Transmission electron microscopy (TEM) of columnar cells of the cuticular epithelium showed the accumulation of viral particles, either dispersed in the cytoplasm or in a string‐like or paracrystalline array. These arrays of virions were within membrane‐bound vesicles formed from the endoplasmic reticulum (ER), in orderly arrays on the outer nuclear membrane or along the ER. The virus particles had apparently proliferated in the ER. The virions had an opaque area with an approximate diameter of 20 nm and an electron‐lucent surface layer. The approximate diameter of the non‐enveloped virions was 25 nm. The cytological changes observed are similar to those associated with the Picornaviridae and Nodaviridae families. The histopathology and ultrastructure of a new disease in L. vannamei is associated with the presence of a putative new virus. Until further isolation and characterization is performed, it is recommended to refer to the agent as Litopenaeus vannamei viral‐like particles (LvVLPs).  相似文献   

10.
Several different viruses have been associated with myocarditis‐related diseases in the Atlantic salmon aquaculture industry. In this study, we investigated the presence of PMCV, SAV, PRV and the recently identified Atlantic salmon calicivirus (ASCV), alone and as co‐infections in farmed Atlantic salmon displaying myocarditis. The analyses were performed at the individual level and comprised qPCR and histopathological examination of 397 salmon from 25 farms along the Norwegian coast. The samples were collected in 2009 and 2010, 5–22 months post‐sea transfer. The study documented multiple causes of myocarditis and revealed co‐infections including individual fish infected with all four viruses. There was an overall correlation between lesions characteristic of CMS and PD and the presence of PMCV and SAV, respectively. Although PRV was ubiquitously present, high viral loads were with a few exceptions, correlated with lesions characteristic of HSMI. ASCV did not seem to have any impact on myocardial infection by PMCV, SAV or PRV. qPCR indicated a negative correlation between PMCV and SAV viral loads. Co‐infections result in mixed and atypical pathological changes which pose a challenge for disease diagnostic work.  相似文献   

11.
This work reports the effect of two DNA vaccines against salmonid alphavirus 3 (SAV3) in Atlantic salmon. Presmolts were vaccinated by intramuscular injection of plasmids encoding the SAV3 structural polyprotein C‐E3‐E2‐6K‐E2 (pCSP), E2 only (pE2), or plasmid without insert (pcDNA3.3). E2 is expressed at the surface of cells transfected with pCSP and internally in cells transfected with pE2. A commercial vaccine based on inactivated SAV (NCPD) was used for comparison. At 10 weeks post‐vaccination, only fish vaccinated with pCSP showed antibody against E2 and virus‐neutralizing activity. Vaccinated fish were infected with SAV3 to determine protection by virus quantitation in serum after 7 days and scoring of pathological changes after 21 days. Fish vaccinated with both pCSP and NCPD vaccines showed significant virus reduction in serum, while fish vaccinated with pE2 did not. All fish vaccinated with pcDNA3.3 and pE2 showed pathological changes in organs typical of PD, 60% of fish vaccinated with NCPD showed PD pathology, while fish vaccinated with pCSP did not show PD pathology. Taken together, DNA vaccination with pCSP provided strong protection for salmon against SAV3 infection, which in part may be due to production of virus‐neutralizing antibodies.  相似文献   

12.
Viral diseases represent serious challenge in marine farming of Atlantic salmon (Salmo salar L). Pancreas disease (PD) caused by a salmonid alphavirus (SAV) is by far the most serious in northern Europe. To control PD, it is necessary to identify virus transmission routes. One aspect to consider is whether the virus is transported as free particles or associated with potential vectors. Farmed salmonids have high lipid content in their tissue which may be released into the environment from decomposing dead fish. At the seawater surface, the effects of wind and ocean currents are most prominent. The aim of this study was primarily to identify whether the lipid fraction leaking from dead infected salmon contains SAV. Adipose tissue from dead SAV‐infected fish from three farming sites was submerged in beakers with sea water in the laboratory and stored at different temperature and time conditions. SAV was identified by real‐time RT‐PCR in the lipid fractions accumulating at the water surface in the beakers. SAV‐RNA was also present in the sea water. Lipid fractions were transferred to cell culture, and viable SAV was identified. Due to its hydrophobic nature, fat with infective pathogenic virus at the surface may contribute to long‐distance transmission of SAV.  相似文献   

13.
14.
A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n = 44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.  相似文献   

15.
16.
Cytogenetic abnormalities associated with viral infections, including from viruses of the Herpesvirales order, have been reported in vertebrate species. Ostreid herpesvirus 1 (OsHV‐1) has been detected worldwide during mortality outbreaks of the Pacific oyster Crassostrea gigas. On the other hand, a high proportion of aneuploid cells in somatic tissues have been observed in C. gigas. In this study, we analysed the putative association between aneuploidy levels and the detection of OsHV‐1 in gills of C. gigas, the Portuguese oyster C. angulata and their F1 hybrids cultured in Ria Formosa (Portugal). OsHV‐1 was detected by PCR in 5.4% of the total of oysters analysed (n = 111) namely in 11.1%, 8.0% and 1.7% of C. gigas, C. angulata and F1 hybrid respectively. Sequencing analysis of a viral fragment amplified with the C2/C6 primer pair revealed a high similarity with the OsHV‐1 reference type. Moreover, in situ hybridization confirmed the presence of OsHV‐1 in gill tissue. Oysters where OsHV‐1 was detected had a significantly higher mean percentage of aneuploid cells (25%) than the ones where the virus was not detected (18%). However, the overall low percentage of positive samples contrasted with the high mean percentage of aneuploidy observed, with 50% of the oysters analysed showing a percentage of aneuploid cells between 20% and 30%. We hypothesize that somatic aneuploidy may adversely affect oysters making them more prone to OsHV‐1 infection, but the virus is unlikely to be the cause of somatic aneuploidy.  相似文献   

17.
Up to now, only a few brief procedures for purifying white spot syndrome virus (WSSV) have been described. They were mainly based on sucrose, NaBr and CsCl density gradient centrifugation. This work describes for the first time the purification of WSSV through iodixanol density gradients, using virus isolated from infected tissues and haemolymph of Penaeus vannamei (Boone). The purification from tissues included a concentration step by centrifugation (2.5 h at 60 000  g ) onto a 50% iodixanol cushion and a purification step by centrifugation (3 h at 80 000  g ) through a discontinuous iodixanol gradient (phosphate‐buffered saline, 5%, 10%, 15% and 20%). The purification from infected haemolymph enclosed a dialysis step with a membrane of 1 000 kDa (18 h) and a purification step through the earlier iodixanol gradient. The gradients were collected in fractions and analysed. The number of particles, infectivity titre (in vivo), total protein and viral protein content were evaluated. The purification from infected tissues gave WSSV suspensions with a very high infectivity and an acceptable purity, while virus purified from haemolymph had a high infectivity and a very high purity. Additionally, it was observed that WSSV has an unusually low buoyant density and that it is very sensitive to high external pressures.  相似文献   

18.
Viral nervous necrosis (VNN) affects more than 120 species mostly belonging to the order Perciformes. However, none of the brackishwater species belonging to the family Cichlidae under the order Perciformes are reported to be susceptible. Hence, the present experiment was undertaken to study the susceptibility of the brackishwater cichlid, pearlspot, Etroplus suratensis to NNV. Thirty‐day‐old pearlspot larvae were infected with NNV by immersion. Mortality was recorded till 14 days post‐infection, and the infected larvae were subjected to nested RT‐PCR and histology. The virus was isolated from infected larvae using SSN‐1 cells. To study the replication of the virus in vitro, primary cultured brain cells of E. suratensis and IEK cells were infected with NNV. No mortality was observed in any of the control or experimentally infected larvae. However, the experimentally infected larvae were positive for NNV by nested RT‐PCR and the virus was isolated using SSN‐1 cells. Further, the infected pearlspot brain cells and IEK cells showed cytopathic effect at second and third passage of the virus and they were positive for NNV by nested RT‐PCR. Pearlspot is relatively resistant to VNN although the virus could replicate in the larvae and in cell culture.  相似文献   

19.
20.
Pancreas disease (PD) caused by salmonid alphavirus (SAV) severely affects salmonid aquaculture during the seawater phase. To characterize immune cells in target tissues for SAV infection, heart, pancreas and pyloric caeca were analysed from two groups of fish adapted to seawater for 2 and 9 weeks. The sections were scored for the relative abundance of cells expressing MHC class II, IgM, CD3, CD8 or neutrophil/granulocyte markers using immuno‐histochemical techniques. In general, necrosis of tissue was more severe in fish infected at 2 weeks post‐seawater transfer (wpt) compared with those infected at 9 wpt. At 9 wpt, there were higher numbers of MHC II+ cells in heart, pancreas and pyloric caeca, IgM+ cells in heart and pancreas, and CD3+ cells in pancreas compared to those infected at 2 wpt. The majority of the immune cells infiltrating PD‐affected tissues were MHC II+ and CD3+ cells suggesting that antigen‐presenting cells and T lymphocytes are the main types of immune cells responding to SAV infection. All the investigated cell types were also observed in pyloric caeca of infected fish, suggesting that this tissue may play a role in the immune response to SAV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号