首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stakeholders increasingly expect ecosystem assessments as part of advice on fisheries management. Quantitative models to support fisheries decision‐making may be either strategic (‘big picture’, direction‐setting and contextual) or tactical (focused on management actions on short timescales), with some strategic models informing the development of tactical models. We describe and review ‘Models of Intermediate Complexity for Ecosystem assessments’ (MICE) that have a tactical focus, including use as ecosystem assessment tools. MICE are context‐ and question‐driven and limit complexity by restricting the focus to those components of the ecosystem needed to address the main effects of the management question under consideration. Stakeholder participation and dialogue is an integral part of this process. MICE estimate parameters through fitting to data, use statistical diagnostic tools to evaluate model performance and account for a broad range of uncertainties. These models therefore address many of the impediments to greater use of ecosystem models in strategic and particularly tactical decision‐making for marine resource management and conservation. MICE are capable of producing outputs that could be used for tactical decision‐making, but our summary of existing models suggests this has not occurred in any meaningful way to date. We use a model of the pelagic ecosystem in the Coral Sea and a linked catchment and ocean model of the Gulf of Carpentaria, Australia, to illustrate how MICE can be constructed. We summarize the major advantages of the approach, indicate opportunities for the development of further applications and identify the major challenges to broad adoption of the approach.  相似文献   

2.
Annual fish landings for the Greek seas were analysed for the period 1982–2007 and classified into exploitation categories based on a catch‐based stock classification method. In 2007, about 65% of the Greek stock were characterised as overfished, 32% as fully exploited and only 3% were characterised as developing; collapsed stocks were not recorded. The cumulative percentage of fully exploited and overfished stocks has been increasing over the past 20 years suggesting overexploitation of resources. The results were contrasted against total landings, the fishing‐in‐balance index (FiB) and fishing effort, and some irregularities on the dataset were explained based on current legislation and management measures. A positive correlation between FiB and total fishing effort confirmed the expansion of the Greek fisheries up to 1994, but contraction thereafter. The results suggest that the apparently stable overall catches and decreasing effort may be deceiving, as they hide an underlying pattern of overexploitation in some of the stocks. It was concluded that the Greek fisheries are no longer sustainable and radical management measures are needed.  相似文献   

3.
Ecological modelling tools are applied worldwide to support the ecosystem‐based approach of marine resources (EAM). In the last decades, numerous applications were attempted in the Mediterranean Sea, mainly using the Ecopath with Ecosim (EwE) tool. These models were used to analyse a variety of complex environmental problems. Many applications analysed the ecosystem impacts of fishing and assessed management options. Other studies dealt with the accumulation of pollution through the food web, the impact of aquaculture or the ecosystem effects of climate change. They contributed to the scientific aspects of an ecosystem‐based approach in the region because they integrated human activities within an ecosystem context and evaluated their impact on the marine food web, including environmental factors. These studies also gathered a significant amount of information at an ecosystem level. Thus, in the second part of this review, we used this information to quantify structural and functional traits of Mediterranean marine ecosystems at regional scales as the illustration of further potentialities of EwE for an EAM. Results highlighted differential traits between ecosystem types and a few between basins, which illustrate the environmental heterogeneity of the Mediterranean Sea. Moreover, our analysis evidenced the importance of top predators and small pelagic fish in Mediterranean ecosystems, in addition to the structural role of benthos and plankton organisms. The impact of fishing was high and of a similar intensity in the western, central and eastern regions and showed differences between ecosystem types. The keystone role of species was more prominent in protected environments.  相似文献   

4.
Worldwide, most sea cucumber fisheries are ineffectively managed, leading to declining stocks and potentially eroding the resilience of fisheries. We analyse trends in catches, fishery status, fishing participation and regulatory measures among 77 sea cucumber fisheries through data from recent fishery reports and fishery managers. Critical gaps in fisheries biology knowledge of even commonly targeted species undermine the expected success of management strategies. Most tropical fisheries are small‐scale, older and typified by numerous (>8) species, whereas temperate fisheries are often emerging, mono‐specific and industrialized. Fisher participation data indicated about 3 million sea cucumber fishers worldwide. Fisher participation rates were significantly related to the average annual yield. permanova analysis showed that over‐exploited and depleted fisheries employed different sets of measures than fisheries with healthier stocks, and a non‐metric multidimensional scaling ordination illustrated that a broad set of regulatory measures typified sustainable fisheries. SIMPER and regression tree analyses identified that the dissimilarity was most related to enforcement capacity, number of species harvested, fleet (vessel) controls, limited entry controls and rotational closures. The national Human Development Index was significantly lower in countries with over‐exploited and depleted fisheries. Where possible, managers should limit the number of fishers and vessel size and establish short lists of permissible commercial species in multispecies fisheries. Our findings emphasize an imperative to support the enforcement capacity in low‐income countries, in which risk of biodiversity loss is exceptionally high. Solutions for greater resilience of sea cucumber stocks must be embedded within those for poverty reduction and alternative livelihood options.  相似文献   

5.
Reconciling food security, economic development and biodiversity conservation is a key challenge, especially in the face of the demographic transition characterizing many countries in the world. Fisheries and marine ecosystems constitute a difficult application of this bio‐economic challenge. Many experts and scientists advocate an ecosystem approach to manage marine socio‐ecosystems for their sustainability and resilience. However, the ways by which to operationalize ecosystem‐based fisheries management (EBFM) remain poorly specified. We propose a specific methodological framework—viability modelling—to do so. We show how viability modelling can be applied using four contrasted case‐studies: two small‐scale fisheries in South America and Pacific and two larger‐scale fisheries in Europe and Australia. The four fisheries are analysed using the same modelling framework, structured around a set of common methods, indicators and scenarios. The calibrated models are dynamic, multispecies and multifleet and account for various sources of uncertainty. A multicriteria evaluation is used to assess the scenarios’ outcomes over a long time horizon with different constraints based on ecological, social and economic reference points. Results show to what extent the bio‐economic and ecosystem risks associated with the adoption of status quo strategies are relatively high and challenge the implementation of EBFM. In contrast, strategies called ecoviability or co‐viability strategies, that aim at satisfying the viability constraints, reduce significantly these ecological and economic risks and promote EBFM. The gains associated with those ecoviability strategies, however, decrease with the intensity of regulations imposed on these fisheries.  相似文献   

6.
7.
The concept of ecosystem‐based fisheries management (EBFM) has been subjected to debate since it was introduced in the late 1990s. The development of the concept seems to follow two separate but simultaneous trajectories of increased popularity but also sustained critique. This paper offers an analysis of potential mechanisms behind these disparate trajectories by drawing on a theoretical framework from science and technology studies (STS) centred around "black box" and actor‐network theory. To support our analysis, we perform an exploratory literature review of how the EBFM concept has been used in a selection of high impact fisheries research papers. We find that the popularity of EBFM does not guarantee its integrity, usefulness or analytical insight, but also that persistent critique of how the concept is used seems to be driving some change. We think that a continued trajectory of increased understanding, contextualization and discernibility of EBFM can help overcome the considerable ambiguity associated with the concept and make it increasingly useful to fisheries management. This means moving away from routine use of the term towards a practicable and tangible approach to improve fisheries sustainability.  相似文献   

8.
International instruments of fisheries governance have set the core principles for the management of highly migratory fishes. We evaluated the progress of tuna Regional Fisheries Management Organizations (tRFMOs) in implementing the ecological component of ecosystem‐based fisheries management (EBFM). We first developed a best case tRFMO for EBFM implementation. Second, we developed criteria to evaluate progress in applying EBFM against this best case tRFMO. We assessed progress of the following four ecological components: target species, bycatch species, ecosystem properties and trophic relationships, and habitats. We found that many of the elements necessary for an operational EBFM are already present, yet they have been implemented in an ad hoc way, without a long‐term vision and a formalized plan. Overall, tRFMOs have made considerable progress monitoring the impacts of fisheries on target species, moderate progress for bycatch species, and little progress for ecosystem properties and trophic relationships and habitats. The tRFMOs appear to be halfway towards implementing the ecological component of EBFM, yet it is clear that the “low‐hanging fruit” has been plucked and the more difficult, but surmountable, issues remain, notably the sustainable management of bycatch. All tRFMOs share the same challenge of developing a formal mechanism to better integrate ecosystem science and advice into management decisions. We hope to further discussion across the tRFMOs to inform the development of operational EBFM plans.  相似文献   

9.
The impact of recreational fishing on fish stocks remains largely unknown, as this is inherently difficult to monitor, especially in areas such as the Mediterranean Sea where many species are targeted using a variety of fishing gears and techniques. This study attempts to complement existing data sets and construct the profile of recreational fisheries in the EU‐Mediterranean countries using videos publicly available on social media. A total of 1526 video records were selected, featuring the capture of 7799 fish specimens. The results show recreational fishing is multispecies in nature (26 species contributed to >80% % of the most numerically important species caught) and exhibits a spatially homogeneous pattern, with differences in species composition being mostly dependent on the fishing technique used rather than on the country. Such findings fill an important knowledge gap on recreational fishing activities, and the methodology provides an innovative approach to gather statistics on data‐poor thematic areas that can potentially complement other data sets, such as the EU Data Collection Multi‐Annual Programme.  相似文献   

10.
Escape incidents in coastal aquaculture lead to economic losses for farmers and may have indirect socio‐economic effects on local fisheries. In this study, the relationship of meagre, Argyrosomus regius (Asso), production in open‐sea cages and coastal small‐scale fisheries was analysed through captures of escapes, which are easily detected because this species is considered locally absent in native communities in Western Mediterranean regions. Scale reading showed that 100% of captured meagre were escapees. The existence of a direct relationship, in terms of biomass, between the development of meagre coastal aquaculture and the increase of captures of this species by local fisheries was demonstrated. The spatial distribution of meagre captures suggested that there is a local environmental and economic interaction between meagre aquaculture and fisheries through escapees. Monitoring the presence of locally absent species such as meagre within landings might help to assess the magnitude of escapes, the potential economic effects on local aquaculture and fishery industries, and the potential adverse ecological impacts on local ecosystems.  相似文献   

11.
Meta‐analysis of marine biological resources can elucidate general trends and patterns to inform scientists and improve management. Crustacean stocks are indispensable for European and global fisheries; however, studies of their aggregate development have been rare and confined to smaller spatial and temporal scales compared to fish stocks. Here, we study the aggregate development of 63 NE Atlantic and Mediterranean crustacean stocks of six species (Nephrops norvegicus, Pandalus borealis, Parapenaeus longirostris, Aristeus antennatus, Aristaeomorpha foliacea and Squilla mantis) in 1990–2013 using biomass index data from official stock assessments. We implemented a dynamic factor analysis (DFA) to identify common underlying trends in biomass indices and investigate the correlation with the North Atlantic Oscillation (NAO) index. The analysis revealed increasing and decreasing trends in the northern and southern NE Atlantic, respectively, and stable or slowly increasing trends in the Mediterranean, which were not related to NAO. A separate meta‐analysis of the fishing mortality (F) and biomass (B) of 39 analytically assessed crustacean stocks was also carried out to explore their development relative to MSY. NE Atlantic crustacean stocks have been exploited on average close to FMSY and remained well above BMSY in 1995–2013, while Mediterranean stocks have been exploited 2–4 times above FMSY in 2002–2012. Aggregate trends of European crustacean stocks are somewhat opposite to trends of fish stocks, suggesting possible cascading effects. This study highlights the two‐speed fisheries management performance in the northern and southern European seas, despite most stocks being managed in the context of the European Union's Common Fisheries Policy.  相似文献   

12.
Model uncertainty in the ecosystem approach to fisheries   总被引:2,自引:0,他引:2  
Fisheries scientists habitually consider uncertainty in parameter values, but often neglect uncertainty about model structure, an issue of increasing importance as ecosystem models are devised to support the move to an ecosystem approach to fisheries (EAF). This paper sets out pragmatic approaches with which to account for uncertainties in model structure and we review current ways of dealing with this issue in fisheries and other disciplines. All involve considering a set of alternative models representing different structural assumptions, but differ in how those models are used. The models can be asked to identify bounds on possible outcomes, find management actions that will perform adequately irrespective of the true model, find management actions that best achieve one or more objectives given weights assigned to each model, or formalize hypotheses for evaluation through experimentation. Data availability is likely to limit the use of approaches that involve weighting alternative models in an ecosystem setting, and the cost of experimentation is likely to limit its use. Practical implementation of an EAF should therefore be based on management approaches that acknowledge the uncertainty inherent in model predictions and are robust to it. Model results must be presented in ways that represent the risks and trade‐offs associated with alternative actions and the degree of uncertainty in predictions. This presentation should not disguise the fact that, in many cases, estimates of model uncertainty may be based on subjective criteria. The problem of model uncertainty is far from unique to fisheries, and a dialogue among fisheries modellers and modellers from other scientific communities will therefore be helpful.  相似文献   

13.
ABSTRACT:   An observer's sampling scheme, that employed fisheries scientists onboard fleet vessels was used to examine temporal fishing tactics and strategies affecting catches of the purse seine fishery in the Mediterranean. The month, water depth and the fishers' behavior were found to have an effect on total and Trachurus spp. retained catches, with fishers' behavior explaining the largest percentage of the data variation. The distance of the fishing ground from port and the market price modulated both the retained catches and the fishing location choice. Results confirmed that fishers while in a specific fishing ground developed strategies that would allow them to retain, and thus land, the best possible combination of landings × market value. The current findings also revealed that, when constrained by physical and economic conditions, fishers preferred to minimise risk rather than maximize landings. The observed major switches in fishing strategy were attributed to fishers' risk attitude response towards higher profitability. As the Mediterranean fishery system is mainly based on control effort and technical measures regimes, the current findings are discussed in the light of the need to consider additional information to management plans and decisions.  相似文献   

14.
This study examined links between the variability of coastal front features and composition of fishery landings. Satellite‐derived sea surface temperature data allowed the detection of thermal fronts and calculation of front metrics that account for gradient, persistency, and vicinity. Landings data were clustered by functional group (according to habitat use, size, morphology), and trophic level (TL). Three independent time series analyses, based on two different classes of statistical methodologies, were carried out: (i) correlation analysis performed on species aggregated by functional groups, and (ii) compositional analysis performed on the top five species landed and on species aggregated by trophic level. Analyses were carried out for the Moroccan coast of the Alboran Sea (western Mediterranean Sea). Results of the proposed type of application were discussed with respect to their potential for improving scientific knowledge and management of fisheries in data‐poor areas. Pelagic landings were associated with front indicators in two‐thirds of tested cases. The results demonstrated a markedly different association between landings and front features in the Nador fishing zone, relative to M'diq and Al Hoceima. Improved performance of the front gradient and persistence indicator was detected, with respect to the front gradient only for flatfish and demersal landings. Compositional data regression outlined a different role for Sardina pilchardus and Trachurus trachurus in the Al Hoceima and M'diq landings, and in the latter case the dominance of these two species in the landings seemed to respond to the front density indicator. A decreasing trend in TL > 3.5 landings was detected with increasing front distance.  相似文献   

15.
Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries‐induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life‐history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.  相似文献   

16.
Large pelagic fishes are assessed and managed by tuna Regional Fisheries Management Organizations (tRFMOs). These organizations have been criticized for not meeting conservation objectives, which may relate to aspects of governance and management. No previous studies have systematically evaluated why management performance differs among tRFMOs and among stocks within each tRFMO. In this study, we collected data on the nature of research, management, enforcement and socioeconomics of management systems in the five principal tRFMOs of the world's oceans. We quantified influences of economic and fishery‐related factors on these management characteristics and examined how these factors vary among tRFMOs. We found that tRFMOs with a greater number of member countries, a greater economic dependency on tuna resources, a lower mean per capita gross domestic product, a greater number of fishing vessels and smaller vessels were associated with less intensive research, management and enforcement in these tuna fisheries. We also quantified the influence of specific management attributes and of biological, economic and fishery‐related factors on the trends and current status of large pelagic fish stocks in these regions. The most important factors correlated with trends and current stock status were external to the management systems, and included stock size, age at maturity, ex‐vessel price and economic dependency of countries on tuna fisheries. To improve the overall status of large pelagic fish stocks in the global high seas, more intensive data collection, research and management are needed in certain areas, especially in the Indian Ocean, and for certain stocks, especially non‐target species.  相似文献   

17.
Ecosystem‐based management of fisheries aims to allow sustainable use of fished stocks while keeping impacts upon ecosystems within safe ecological limits. Both the FAO Code of Conduct for Responsible Fisheries and the Aichi Biodiversity Targets promote these aims. We evaluate implementation of ecosystem‐based management in six case‐study fisheries in which potential indirect impacts upon bird or mammal predators of fished stocks are well publicized and well studied. In particular, we consider the components needed to enable management strategies to respond to information from predator monitoring. Although such information is available in all case‐studies, only one has a reference point defining safe ecological limits for predators and none has a method to adjust fishing activities in response to estimates of the state of the predator population. Reference points for predators have been developed outside the fisheries management context, but adoption by fisheries managers is hindered a lack of clarity about management objectives and uncertainty about how fishing affects predator dynamics. This also hinders the development of adjustment methods because these generally require information on the state of ecosystem variables relative to reference points. Nonetheless, most of the case‐studies include precautionary measures to limit impacts on predators. These measures are not used tactically and therefore risk excessive restrictions on sustainable use. Adoption of predator reference points to inform tactical adjustment of precautionary measures would be an appropriate next step towards ecosystem‐based management.  相似文献   

18.
The advent of an ecosystem‐based approach dramatically expanded the scope of fisheries management, creating a critical need for new kinds of data and quantitative approaches that could be integrated into the management system. Ecosystem models are needed to codify the relationships among drivers, pressures and resulting states, and to quantify the trade‐offs between conflicting objectives. Incorporating ecosystem considerations requires moving from the single‐species models used in stock assessments, to more complex models that include species interactions, environmental drivers and human consequences. With this increasing model complexity, model fit can improve, but parameter uncertainty increases. At intermediate levels of complexity, there is a ‘sweet spot’ at which the uncertainty in policy indicators is at a minimum. Finding the sweet spot in models requires compromises: for example, to include additional component species, the models of each species have in some cases been simplified from age‐structured to logistic or bioenergetic models. In this paper, we illuminate the characteristics, capabilities and short‐comings of the various modelling approaches being proposed for ecosystem‐based fisheries management. We identify key ecosystem needs in fisheries management and indicate which types of models can meet these needs. Ecosystem models have been playing strategic roles by providing an ecosystem context for single‐species management decisions. However, conventional stock assessments are being increasingly challenged by changing natural mortality rates and environmentally driven changes in productivity that are observed in many fish stocks. Thus, there is a need for more tactical ecosystem models that can respond dynamically to changing ecological and environmental conditions.  相似文献   

19.
Conservation of apex predators is a key challenge both in marine and terrestrial ecosystems. The white shark is a rare but persistent inhabitant of the Mediterranean Sea and it is currently assessed as “critically endangered” in the region. However, the population trends and dynamics of this species in the area are still unknown. Little is known about white shark distribution, habitat use and population abundance trends, aspects that are critical for conservation and management. In this study, we built the most comprehensive database of white shark occurrence records in the region. We collected 773 different records from different sources and used them to characterize the spatial and temporal patterns of abundance of Mediterranean white sharks between 1860 and 2016. We analysed these data by using generalized additive models and used spatially disaggregated information on human population abundance as a proxy of observation effort. Our results suggest a complex trajectory of population change characterized by a historical increase and a more recent reduction (61%, range 58%–72%) since the second half of the 20th century. In particular, analyses reveal a 52% (range 37%–88%) to 96% (range 92%–100%) overall decline in different Mediterranean sectors and a contraction in spatial distribution. Here, we provide the first reconstruction of abundance trends and offer new hypotheses regarding the drivers of change of white sharks in the Mediterranean. Our approach can be broadly applied to data‐poor contexts to reconstruct change and inform the conservation of endangered top predators in the Mediterranean Sea and other intensely used marine regions.  相似文献   

20.
苏萌 《水产学报》2015,39(8):1264-1272
考虑到生态系统状态对渔业的重要影响,渔业生态系统方法(Ecosystem Approach to Fisheries,EAF)把对生态的关注加入渔业管理框架中,并以生态系统管理和渔业管理2个理论为基础,扩展了传统渔业管理的框架:以生态系统健康与人类福利的依存关系为基础,关注多物种管理,均衡生态、人文和制度3个维度的目标,实现渔业的可持续发展。本研究介绍了EAF的由来、定义、基本原则以及功能要素,概述了EAF的实践基础和模型构建的技术路径,对比了EAF与EBFM的异同。虽然EAF的理论和实践仍处于完善和发展阶段,但确为渔业管理的发展方向,介绍EAF对促进我国渔业可持续发展具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号