首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissolved organic matter (DOM) plays an important role in transport, storage and cycling of carbon (C) and nitrogen (N) in forest soils where litter is one of the main sources. The aim was to study the amount and characteristics of DOM leached from freshly fallen litters of silver birch (Betula pendula Roth.), Norway spruce (Picea abies (L.) Karst.) and their mixture during decomposition. DOM was collected after irrigation on eight occasions during 252 days incubation in the laboratory at about 18°C, including one freeze‐thaw cycle. During the incubation about 33–35% of C from birch and spruce litter and 40% of C from their mixture was lost. The total cumulative flux of dissolved organic carbon (DOC) from the mixture of litters was approximately 40% larger than that from single litters. The flux of DOC, DON, phenolic compounds and proteins followed a two‐stage pattern during decomposition. In the first stage the initially large fluxes decreased gradually. In the second stage, after freezing and thawing, the fluxes tended to increase again. Mixing birch and spruce litters and a freeze‐thaw cycle seems to increase the decomposition of litter and result in the increased flux of DOC, DON and phenolic compounds. The flux of hemicelluloses and the degradability of DOM were large at the first leaching occasion and decreased during the incubation. Birch had a 40% larger total flux of easily degradable DOM than spruce, supporting the previous consistent signs of greater microbial biomass and activities related to C and N cycling in soil under birch than under spruce. It is known that recalcitrant DOM might be stabilized whereas labile DOM may promote microbial activity and nutrient cycling. We conclude that the storage and cycling of C and N is affected by both tree species and degradation stage of litter in forest soils.  相似文献   

2.
 We examined how soil organisms and C, N and P mineralisation are affected by admixing deciduous tree species, silver birch (Betula pendula) and woollen birch (B. pubescens), in managed Norway spruce (Picea abies) stands. Pure spruce and mixed spruce–birch stands were examined at four sites in southern and central Sweden. Soil macroarthropods and enchytraeids were sampled in litter and soil. In the uppermost 5 cm of soil humus we determined microbial biomass and microbial respiration; we estimated the rate of C, N and P mineralisation under laboratory conditions. The densities of Coleoptera, Diptera and Collembola were larger in mixed stands than in spruce stands. Soil fauna composition differed between mixed and spruce stands (as revealed by redundancy analysis). Staphyliniidae, Elateridae, Cecidiomyidae larvae and Onychiuridae were the families that increased most strongly in mixed stands. There were no differences in microbial biomass and microbial respiration, nor in the C, N and P mineralisation rates, between mixed and spruce stands. However, within mixed stands microbial biomass, microbial activity and C mineralisation were approximately 15% higher under birch trees than under spruce trees. We propose that the presence of birch leaf litter was likely to be the most important factor causing differences in soil fauna composition. Birch may also influence the quality and the decomposition rate of humus in mixed stands. However, when the proportion of birch trees is low, the short-term (decades) effect of this species on decomposition is likely to be small in mixed stands on acid forest soils. Received: 20 February 1998  相似文献   

3.
The litter decomposition, nutrient patterns, as well as nutrient release and soil nutrient contents were determined in response to nitrogen (N) and phosphorus (P) addition and drought treatments following long-term vegetation recovery. The litter decomposition rate decreased with vegetation recovery, due to changes in litter quality, soil nutrient availability, and soil enzyme activity. Nitrogen addition promoted litter decomposition in the early recovery stages but inhibited decomposition in the later stages, indicating a shift in the nutrient limitations to litter decomposition with succession. Neither N nor P addition had any effect on the release of litter carbon (C), whereas N addition inhibited litter N release. In addition, drought decreased litter decomposition and nutrient release during the vegetation recovery process. Our findings suggest that litter quality, soil nutrient availability, and moisture at different vegetation recovery stages should be considered when modeling the C cycle and nutrient dynamics in these ecosystems.  相似文献   

4.
Herbivores can indirectly affect ecosystem productivity and processes such as nutrient cycling and decomposition by altering the quantity and quality of resource inputs into the decomposer subsystem. Here, we tested how browsing by red deer impacts on the decomposition of, and nutrient loss from, birch leaf litter (Betula pubescens), and tested whether effects of browsing on these measures were direct, via alteration of the quality of leaf litter, or indirect through long term impacts of deer browsing on soil biological properties. This was tested in a microcosm experiment using soil and litter taken from inside and outside three individual fenced exclosures located at Creag Meagaidh National Nature Reserve, Scotland. We found that litter of un-browsed trees decomposed faster than that from browsed trees, irrespective of whether soil was sourced from inside or outside exclosures. These findings suggest that effects of browsing on litter quality, rather than on soil biological properties, are the key determinant of enhanced decomposition in un-browsed areas of this ecosystem. Despite this, we found no consistent impact of browsing on litter C:N, a key indicator of litter quality; however, the rate of litter decomposition was linearly and negatively related to litter C:N when analysed across all the sites, indicating that this measure, in part, contributed to variation in rates of decomposition in this ecosystem. Our findings indicate that herbivores impact negatively on rates of decomposition in this ecosystem, ultimately retarding nutrient cycling rates, and that these effects are, in part, related to changes in litter quality.  相似文献   

5.
Abstract

Litter decomposition dynamics of three Mediterranean riverine species [Alnus glutinosa (L.) Gaertn, Fraxinus angustifolia Vahl., and Populus x hybrida] was studied in a 2‐year experiment in the province of Guadalajara (Spain) using the litterbag technique. Decay rates of the litter were estimated by fitting a single exponential model to the litter decomposition data. At the end of the experiment (after 485 days), the remaining litter necromass varied in the following order: Populus x hybrida>Alnus glutinosa>Fraxinus angustifolia. Litter of the three species was fast degraded; ash litter was almost totally degraded at the end of the experiment. Alder had the highest concentrations of total nitrogen and ammonium in litter, and its pattern of degradation and release to the system was different to the other two litters. This could influence the soil nutrient contents in each system as was indicated by the soil nutrient values.  相似文献   

6.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

7.
Purpose

Understanding ecosystem processes such as litter decomposition in response to dramatic land-use change is critical for modeling and predicting carbon (C) cycles. However, the patterns of litter decomposition along with long-term secondary succession (over 100 years) are not well reported, especially concerning nutrient limitations on litter decomposition.

Materials and methods

To clarify the response of litter decomposition to changes in soil nutrient availability, we conducted four incubation experiments involving soil and litter and nutrient addition from different successional stages and investigated the changes in microbial respiration and litter mass loss.

Results and discussion

Our results revealed that microbial respiration increased with succession without any litter addition (1.19~1.73 mg C g?1 soil), and litter addition significantly promoted microbial respiration (16.5~72.9%), especially in the early successional stage (grassland and shrubland). The decomposition rate of the same litter decreased with succession. In addition, nitrogen (N) and phosphorus (P) addition showed significant effects on litter decomposition and microbial respiration; P addition promoted litter decomposition (2.4~15.3%) and microbial respiration (10.1~34.5%) in all successional stages, while N addition promoted litter decomposition (4.0~10.3%) and microbial respiration (5.4~27.2%) in all except the last stage of succession, which showed a negative effect on litter decomposition (??7.5%) and microbial respiration (??6.1%), indicating possible N saturation of litter decomposition and microbial respiration.

Conclusions

This work highlights that soil nutrient availability and successional stages need to be taken into account to predict the changes to litter decomposition in response to global changes.

  相似文献   

8.
Soil respiration is the largest terrestrial source of CO2 to the atmosphere. In forests, roughly half of the soil respiration is autotrophic (mainly root respiration) while the remainder is heterotrophic, originating from decomposition of soil organic matter. Decomposition is an important process for cycling of nutrients in forest ecosystems. Hence, tree species induced changes may have a great impact on atmospheric CO2 concentrations. Since studies on the combined effects of beech-spruce mixtures are very rare, we firstly measured CO2 emission rates in three adjacent stands of pure spruce (Picea abies), mixed spruce-beech and pure beech (Fagus sylvatica) on three base-rich sites (Flysch) and three base-poor sites (Molasse; yielding a total of 18 stands) during two summer periods using the closed chamber method. CO2 emissions were higher on the well-aerated sandy soils on Molasse than on the clayey soils on Flysch, characterized by frequent water logging. Mean CO2 effluxes increased from spruce (41) over the mixed (55) to the beech (59) stands on Molasse, while tree species effects were lower on Flysch (30-35, mixed > beech = spruce; all data in mg CO2-C m−2 h−1). Secondly, we studied decomposition after fourfold litter manipulations at the 6 mixed species stands: the Oi - and Oe horizons were removed and replaced by additions of beech -, spruce - and mixed litter of the adjacent pure stands of known chemical quality and one zero addition (blank) in open rings (20 cm inner diameter), which were covered with meshes to exclude fresh litter fall. Mass loss within two years amounted to 61-68% on Flysch and 36-44% on Molasse, indicating non-additive mixed species effects (mixed litter showed highest mass loss). However, base cation release showed a linear response, increasing from the spruce - over the mixed - to the beech litter. The differences in N release (immobilization) resulted in a characteristic converging trend in C/N ratios for all litter compositions on both bedrocks during decomposition. In the summers 2006 and 2007 we measured CO2 efflux from these manipulated areas (a closed chamber fits exactly over such a ring) as field indicator of the microbial activity. Net fluxes (subtracting the so-called blank values) are considered an indicator of litter induced changes only and increased on both bedrocks from the spruce - over the mixed - to the beech litter. According to these measurements, decomposing litter contributed between 22-32% (Flysch) and 11-28% (Molasse) to total soil respiration, strengthening its role within the global carbon cycle.  相似文献   

9.

Purpose

The rate of litter decomposition can be affected by a suite of factors, including the diversity of litter type in the environment. The effect of mixing different litter types on decomposition rates is increasingly being studied but is still poorly understood. We investigated the effect of mixing either litter material with high nitrogen (N) and phosphorus (P) concentrations or those with low N and P concentrations on litter decomposition and nutrient release in the context of agroforestry systems.

Materials and methods

Poplar leaf litter, wheat straw, peanut leaf, peanut straw, and mixtures of poplar leaf litter-wheat straw, poplar leaf litter-peanut leaf, and poplar leaf litter-peanut straw litter samples were placed in litter bags, and their rates of decomposition and changes in nutrient concentrations were studied for 12 months in poplar-based agroforestry systems at two sites with contrasting soil textures (clay loam vs silt loam).

Results and discussion

Mixing of different litter types increased the decomposition rate of litter, more so for the site with a clay loam soil texture, representing site differences, and in mixtures that included litter with high N and P concentrations (i.e., peanut leaf). The decomposition rate was highest in the peanut leaf that had the highest N and P concentrations among the tested litter materials. Initial N and P immobilization may have occurred in litter of high carbon (C) to N or C to P ratios, with net mineralization occurring in the later stage of the decomposition process. For litter materials with a low C to N or P ratios, net mineralization and nutrient release may occur quickly over the course of the litter decomposition.

Conclusions

Non-additive effects were clearly demonstrated for decomposition rates and nutrient release when different types of litter were mixed, and such effects were moderated by site differences. The implications from this study are that it may be possible to manage plant species composition to affect litter decomposition and nutrient biogeochemistry; mixed species agroforestry systems can be used to enhance nutrient cycling, soil fertility, and site productivity in land-use systems.  相似文献   

10.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   

11.
A microcosm experiment was conducted to understand the impacts of mixing radiata pine (Pinus radiata D. Don) needle litter and understory (gorse—Ulex europaeus L., broom—Cytisus scoparius L., bracken—Pteridium aquilinum L., and lotus—Lotus pedunculatus L.) litter materials on decomposition and nutrient release dynamics. Mixing of pine needle litter with understory litter material had significant impacts on both the rate of decomposition and nutrient release patterns of pine litter as well as that of the understory species. Incubation in microcosms over 10 months resulted in significantly lower mass loss of radiata pine needle litter mixed with broom and lotus litters (35.8±8.4 and 41.3±0.8%, respectively) than pure pine needle litter (63.5±2.3%). Mixing with pine needle litter significantly increased the mass loss of broom (53.1±6.1%) compared to that of pure broom (30.2±1.0%). Significant transfers of nutrients, especially of magnesium and potassium, were observed in litter mixture treatments. Concentration of K in litter materials was found to be the most limiting factor for the decomposing microorganisms in the present study. The findings of this study suggest that management of understory litter composition via weed control could be used to manipulate carbon turnover and nutrient release in the forest floor. Also, initial selection of understory species will be important and could be managed.  相似文献   

12.
Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.  相似文献   

13.
为探索加快毛白杨落叶分解的途径, 采取室内培养的方法研究了添加铵态氮、硝态氮及混合氮对三倍体毛白杨落叶分解速度和主要营养元素释放的影响。结果表明, 添加氮源对三倍体毛白杨落叶分解有一定的促进作用, 不同氮源之间差异显著。140 d后, 施加铵态氮、混合氮和硝态氮的落叶分解率分别为46.0%、30.0%和28.8%, 而对照为27.4%, 处理间差异显著; Olson指数方程拟合结果表明,施加铵态氮、混合氮和硝态氮后落叶分解50%和95%所需时间分别为175 d、316 d、301 d和781 d、1 238 d、1 627 d,比对照分别缩短49.7%、9.2%、13.5%和52.0%、23.9%、14.1%。同时, 添加氮源后对落叶中N、P、K元素的释放影响有所不同, 其中对K元素的释放基本没有产生影响, 随着分解的进行, 不同处理落叶中K元素浓度逐渐降低。但添加氮源对N、P元素的释放产生了显著影响, 与对照相比, 添加氮源缩短了N、P释放的富集时间, 降低了富集的幅度;N、P的富集时间均从对照的21 d缩短到处理的7 d; N的富集幅度从对照为初始浓度的1.94倍降低到处理为初始浓度的1.32~1.56倍, P的富集幅度从对照为初始浓度的2.98倍降低到处理为初始浓度的1.70~2.26倍。因此添加氮源加快了落叶的分解速度,促进了落叶中N、P的释放, 有利于加快养分循环, 提高立地生产力。  相似文献   

14.
Climate change is likely to alter decomposition rates through direct effects on soil biotic activity and indirect effects on litter quality with possible impacts on the global carbon budget and nutrient cycling. Currently, there is a need to study the combined effects of climatic drivers and agricultural practises on decomposition.In an in situ litter bag experiment, we studied the effects of rainfall variability (including drought combined with heavy rain pulses as well as regular irrigation) interacting with winter warming and increased winter precipitation and with changes in cutting frequency, on decomposition in a temperate grassland. Litter bags contained mixed and species-specific litter of all different climate and land-use manipulations and were placed within the plots of litter origin. Moreover, we aimed to disentangle the causes of changes in decomposition by investigating two further approaches: Firstly, we studied the effects of changes in leaf chemicals as a result of the manipulations by removing litter from the experiment that has been pre-exposed to the manipulations before placing it on an untreated standard plot outside the experiment. Secondly, we assessed the effects of changes in soil faunal activity by investigating the decomposition of standard material under differing rainfall variability.As a result, decomposition was reduced when litter bags were exposed to drought for six weeks within an 11 months period. Neither additional winter rain nor winter warming had an effect on decomposition, likely because winter warming reduced snow cover and increased variability of surface temperatures. Climate manipulations did not change litter quality. Furthermore, decomposition on the untreated standard plot was not affected by the climate manipulations that the litter was previously exposed to. Thus, reduced decomposition under extreme rainfall variability and drought may mainly be caused by a decrease in soil biotic activity, as indicated by reduced decomposition of standard material during drought.More frequent cutting strongly stimulated decomposition, however, this stimulating effect was absent under extreme rainfall variability including drought. The stimulation of decomposition under more frequent cutting was attributed to changes in litter quality, namely a decrease in C/N ratio. Accordingly, litter from more frequently cut communities decomposed faster on the untreated control plot outside the experiment.Projected increases in drought frequency and increased rainfall variability under climate change may inhibit decomposition and alter nutrient and carbon cycling along with soil quality. Especially decomposition in frequently cut grassland appears vulnerable towards drought.  相似文献   

15.
川西亚高山人工云杉林地有机物和养分库的退化与调控   总被引:24,自引:0,他引:24  
研究了川西亚高山云杉人工林地有机物和养分库状况 ,结果表明 :该区云杉人工林有机物和养分库严重退化 ,表现为 ,其凋落物的分解速率和周转期均较次生阔叶林和原始云杉林慢 ,致使地表枯枝落叶干物质和各种养分贮量滞留于凋落物层而不能进入土壤 ,土壤中有机质、全N、全P和碱解N含量随人工云杉林龄的增加而大幅度下降。人工云杉林份组成单一 ,其凋落物分解慢 ,归还土壤凋落物和养分数量少 ,是川西亚高山云杉人工林地土壤有机物和养分库退化的重要原因 ,人为收集凋落物积肥和人工抚育清灌 ,不断带走植被中养分是土壤有机物和养分库不断耗竭的另一重要原因。建议对该区人工成熟林抚育间伐和营造针阔混交林 ,改善成熟林下微环境和改变林份组成 ,可在很大程度上防治云杉人工林土壤有机物和养分库的退化  相似文献   

16.
Abstract

In a southern boreal aspen forest located in Saskatchewan, Canada, we examined decomposition rates of leaf litter from trembling aspen (Populus tremuloides Michx.), hazel (Corylus cornuta March.), and a mixture of different species over a six‐month period. Mass loss was measured in the field using the litter bag method. The greatest mass losses occurred during the first month regardless of litter type. On average, mass loss during the first 28 days was 3.2 g#lbkg‐1#lbd‐1 for the aspen leaves, 4.4 for hazel leaves and 4.9 for the mixture. The initial rapid loss of weight is attributed to leaching and decomposition of water soluble material. The decomposition rates of the leaf litter were related to water‐soluble organic carbon and nitrogen content, and C:N ratio. Several models were used to describe mass loss of the aspen, hazel, and mixed leaf litter at the early stages of decomposition. A single model was not found to be appropriate to describe decomposition of all leaf‐litter types. A second order model provided the best fit for the aspen litter decomposition, while the logarithmic model best described the decomposition of hazel and mixed leaf litter.  相似文献   

17.
选择半干旱(宁夏盐池)、干旱(内蒙古乌拉特后旗)荒漠草原区为研究样地,以牛枝子枯落物为研究对象,采用网孔分解袋法研究土壤动物分解功能对枯落物C、N、P、K分布的影响,结合枯落物分解过程中土壤有机碳(SOC)、全氮(TN)、全磷(TP)、全钾(TK)含量分布特征,阐明土壤动物分解作用对土壤营养元素含量分布的影响规律。结果表明:(1)共捕获土壤动物226只,隶属14科(属)。土壤动物个体数表现为盐池地区均高于乌拉特地区,而类群数差异较小,仅在乌拉特地区灌丛高于裸地。土壤动物Simpson指数、Shannon指数和Margalef指数在不同生境下均无显著差异,Pielou指数在裸地生境下表现为乌拉特地区显著高于盐池地区。(2)不同网孔分解袋中枯落物养分元素均处于不同程度的释放状态。其中枯落物C、N元素累积系数在盐池地区表现为2 mm网孔显著低于0.01 mm网孔,在乌拉特地区表现为2 mm网孔显著高于0.01 mm网孔;枯落物P、K元素累积系数分别在乌拉特地区和盐池地区表现为2 mm网孔显著高于0.01 mm网孔,且土壤动物对盐池枯落物C、N、P、K元素释放均表现为正效应;对乌拉特枯落物C、...  相似文献   

18.
结合野外凋落物分解袋法和室内分析试验,对藏东南2种典型暗针叶林—急尖长苞冷杉(Abies georgei var.Smithii)和林芝云杉(Picea likiangensis var.linzhiensis)凋落物的分解和有机碳释放特征进行研究,分析了2种亚高山暗针叶林凋落物有机碳释放速率与土壤有机碳及其组分之间的关系。结果表明:藏东南2种原始暗针叶林凋落物分解均呈现出雨季分解快(4—9月)、旱季分解慢(10—翌年3月),前期分解快(3—9月)、后期分解慢(10—翌年2月)的特征,且冷杉(PLLF)分解速率大于云杉(AGSF),Olson指数衰减模型能够较好地模拟2种暗针叶林凋落物的分解,冷杉(PLLF)和云杉(AGSF)凋落物半分解时间为2.11,2.52年;分解95%时间为8.96,10.84年;2种暗针叶林凋落物中有机碳含量表现出先上升后下降,再平稳降低的趋势,而2种暗针叶林凋落物中有机碳释放速率表现出先短暂富集再释放的模式;2种暗针叶林土壤总有机碳(TOC)及其活性组分(MBC、POC、LOC)含量都具有明显的表聚性(p<0.01),且同一土壤层次内TOC、MBC、POC、LOC互相之间均呈极显著正相关关系(p<0.01);2种暗针叶林凋落物分解进程中有机碳的释放速率与表层土(0—10 cm)中TOC、MBC、POC、LOC含量、10—20 cm土层中的TOC、MBC含量以及20—40 cm土层中MBC含量之间呈现显著的正相关(p<0.05)。  相似文献   

19.

Purpose

As micronutrients are essential for all living organisms, their availability in forest soils is important to the forest ecosystem. Studying the effect of global warming on the availability of mineral elements is more significant for forest management, but the scarcity of these elements is a concern. This study aims to investigate the responses of soil micronutrient availability to experimental warming in two contrasting forest ecosystems in the Eastern Tibetan Plateau of China.

Materials and methods

Using the open-top chamber (OTC) method simulates the global warming and chemical extractants extract soil micronutrients (CaCl2 and Mehlich-3 extractant for Fe, Mn, Cu, Zn, and with boiling hot water for extracting B) to study the availability of these micronutrients in two contrasting forest ecosystems (a dragon spruce plantation and a natural forest) under experimental warming.

Results and discussion

The results showed that soil temperature in the OTCs was increased by 0.56 and by 0.55 °C in the plantation and the natural forest, respectively. The total and Mehlich-3-extractable Cu, Fe, Mn, and Zn were increased by warming in the plantation (except Mehlich-3-extractable Fe, which decreased slightly) but decreased by warming in the natural forest. The CaCl2-extractable micronutrients were not significantly affected by warming. The retained total B in both the plantation and natural forest was decreased by experimental warming. Either the effect of warming or forest type on these micronutrients varied due to their different associations with soil properties. What is more, the relative impact of forest type was stronger than warming on the soil properties with exception of the soil pH and total B concentration.

Conclusions

Reforestation would generate greater influences on soil environment although it is an important effective action to remain ecologic balance usually. The responses of the total soil micronutrients and their availability to warming depended on the forest type, as their concentration was significantly correlated with the soil water and pH. It was implied that the soil pH and water content are important to the availability of micronutrients in soil and provide managers with important information to better manipulate their forests for tree growth and as wildlife habitats.  相似文献   

20.
Abstract

Because farmers use mixtures of leaves and stems as a soil amendment, data of leaves, stems, and a leaf/stem mixture of Indigofera constricta and Mucuna pruriens from a 20‐week litterbag study were analyzed to assess their decomposition, nutrient release, and possible interactions within mixtures. Decomposition and nitrogen (N)–release patterns were leaves≥mixtures≥stems, whereas phosphorus (P)–release patterns were the opposite (P<0.05). Leaves released 110–130 Kg N ha?1, and mixtures released 30% less. A similar ratio was obtained for P release. This suggests that nutrient release from leaf/stem mixtures is overestimated when only leaves are considered. Decomposition and nutrient‐release patterns of mixtures occasionally differed from estimated patterns by 2–5% (P<0.05), indicating that minor interactions took place. However, estimations based on the amount of released nutrients generally showed non significant interactions. This suggests that the impact of low‐magnitude interactions within mixtures during its decomposition on soil fertility are negligible when considering total nutrient release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号