首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An individual‐based model (IBM) was used to investigate the effects of physical and biological variables on the transport via a jet current of anchovy (Engraulis capensis) eggs from spawning to the nursery grounds in the southern Benguela ecosystem. As transport of eggs and early larvae is considered to be one of the major factors impacting on anchovy recruitment success, this approach may be useful to understand further the recruitment variability in this economically and ecologically important species. By coupling the IBM to a 3D hydrodynamic model of the region called Plume, and by varying parameters such as the spatial and temporal location of spawning, particle buoyancy, and the depth range over which particles were released, we could assess the influences of these parameters on transport success. A sensitivity analysis using a General Linear Model identified the primary determinants of transport success in the various experimental simulations, and model outputs were examined and compared with patterns observed in field studies. Model outputs compared well with observed patterns of vertical and horizontal egg distribution. Particle buoyancy and area of particle release were the major single determinants of transport success, with an egg density of 1.025 g cm?3 maximizing average particle transport success and the western Agulhas Bank being the most successful spawning area. This IBM may be useful as a generic prototype for other upwelling ecosystems.  相似文献   

2.
An individual‐based model (IBM) for the simulation of year‐to‐year survival during the early life‐history stages of the north‐east Atlantic stock of mackerel (Scomber scombrus) was developed within the EU funded Shelf‐Edge Advection, Mortality and Recruitment (SEAMAR) programme. The IBM included transport, growth and survival and was used to track the passive movement of mackerel eggs, larvae and post‐larvae and determine their distribution and abundance after approximately 2 months of drift. One of the main outputs from the IBM, namely distributions and numbers of surviving post‐larvae, are compared with field data as recruit (age‐0/age‐1 juveniles) distribution and abundance for the years 1998, 1999 and 2000. The juvenile distributions show more inter‐annual and spatial variability than the modelled distributions of survivors; this may be due to the restriction of using the same initial egg distribution for all 3 yr of simulation. The IBM simulations indicate two main recruitment areas for the north‐east Atlantic stock of mackerel, these being Porcupine Bank and the south‐eastern Bay of Biscay. These areas correspond to areas of high juvenile catches, although the juveniles generally have a more widespread distribution than the model simulations. The best agreement between modelled data and field data for distribution (juveniles and model survivors) is for the year 1998. The juvenile catches in different representative nursery areas are totalled to give a field abundance index (FAI). This index is compared with a model survivor index (MSI) which is calculated from the total of survivors for the whole spawning season. The MSI compares favourably with the FAI for 1998 and 1999 but not for 2000; in this year, juvenile catches dropped sharply compared with the previous years but there was no equivalent drop in modelled survivors.  相似文献   

3.
Northern rock sole recruitment in the eastern Bering Sea has been hypothesized to (a) depend on wind‐driven surface currents linking spawning and nursery areas, (b) be density‐dependent, and (c) be negatively impacted by cold bottom temperatures over a large nursery area during the first summer of life. A suite of models was developed to test these hypotheses. Data included 32 years of recruitment and spawning biomass estimates derived from a stock assessment model and wind and temperature indices customized to the environmental exposure of age‐0 northern rock sole in the eastern Bering Sea. The predictive ability of the models was evaluated, and the models were used to forecast recruitment to age‐4 for recent year classes which are poorly retained by the standard multi‐species bottom trawl survey gear. Models which included wind and temperature indices performed better than a naïve forecast based on the running mean. The best‐performing model was a categorical model with wind and temperature thresholds, which explained 49% of the variation in recruitment. Ricker models performed more poorly than models without a spawning biomass term, providing no evidence that recruitment is related to stock size. The models forecast higher recruitment for the most recent year classes (2015–2018) than for prior year classes with observed poor recruitment (2006–2013). These environment‐based recruitment forecasts may improve recruitment estimates for the most recent year classes and facilitate study of the effects of future climate change on northern rock sole population dynamics.  相似文献   

4.
Many demersal marine fish species depend on a dispersive larval stage that connects geographically discrete sub‐populations. Understanding connectivity between these sub‐populations is necessary to determine stock structure, which identifies the appropriate spatial scale for fishery management. Such connectivity is poorly understood for King George whiting (Sillaginodes punctatus; Perciformes) in South Australia's gulf system, even though spawning grounds and nursery areas are adequately defined. In response to declines in commercial catches and estimated biomass, this study aimed to determine the most important spawning grounds and nursery areas to recruitment, and the connectivity between them. A biophysical model was seeded with particles according to the distribution and density of eggs throughout the spawning area in 2017 and 2018. Despite inter‐annual differences in the origins of particles, dispersal pathways and predicted settlement areas remained consistent between years. Predicted settlement was generally highest to nursery areas only short distances from regional spawning grounds, consistent with previous hydrodynamic models. However, the model also predicted that spawning in one region could contribute to recruitment in an adjacent region later in the spawning season, which aligned with the breakdown of thermohaline fronts at the entrance of each gulf. The connectivity between spawning grounds and nursery areas predicted by the model is supported by spatio‐temporal patterns in the otolith chemistry of pre‐flexion larvae and settled juveniles. Consequently, the most parsimonious explanation is that the populations of King George whiting in South Australia's gulf system constitute a single, panmictic stock, which has implications for fishery management.  相似文献   

5.
The investigation of larval dispersal and retention, their variability and dependence on wind conditions, has become a major topic in fisheries research owing to potential effects on stock recruitment and stock structuring. The present study quantifies the wind‐induced variability of larval retention of herring in a highly productive coastal lagoon of the Western Baltic Sea. This lagoon, the Greifswalder Bodden, represents the main spawning area of Western Baltic Spring‐Spawning Herring, a stock that has recently undergone a continuous decline in recruitment. The study tests whether this decline was related to changes in larval retention, more precisely to changes in wind conditions, the main forcing of the lagoon's circulation. To answer this, a model approach was applied. Larvae were tracked as Lagrangian drifters under constant and variable wind conditions, examining the main drift patterns and reconstructing the incidents during the period of recruitment decline. For the latter, weekly cohorts of virtual larvae were released in the lagoon over the entire spawning period (April–June; >16 weeks). The fraction of retained larvae per cohort was related to observed larval abundances. On this basis, a new retention index was defined to evaluate the annual larval retention. The results presented cannot explain the observed recruitment decline but characterize the lagoon as an important larval retention area by virtue of unsteady wind conditions that prevent a steady outflow of larvae.  相似文献   

6.
We assessed by numerical modeling the coastal fish larval dispersion along the southern coast of Mallorca (Balearic Islands, NW Mediterranean) with the objective of determining the factors that contribute to successful recruitment. We assumed that fish larvae dispersal is mainly regulated by physical transport. Currents are mainly wind driven in this area; therefore, changes in wind forcing have a first‐order impact on larval transport. The synoptic wind patterns were systematically analyzed based on self‐organizing map analysis. The wind fields were clustered using a neural network pattern recognition approach into two modes, producing opposite along‐shelf flow. The seasonal changes between spring and summer in the dominance of either mode modulate the along‐shelf circulation, producing flow shifts under some circumstances. This variability in the wind regime was consistent throughout the 10 years analyzed (2000–2009). Using the Princeton Ocean Model (POM) and a particle‐tracking algorithm, we analyzed the effect of wind‐forced currents in the connectivity among near‐shore habitats. We show that, at the spatial scale considered, the coastal morphology and stochastic wind forcing favor local recruitment (mean of 30% self‐recruitment). Maximum transport distances of 20–30 km were typically associated with particles left to drift for 21 days. The implications for the performance of the four marine protected areas near SW Mallorca Island are discussed. Our results suggest that, although wind episodes determine the fate of short‐time spawning events, on a seasonal basis, regular larval supply to coastal zones is ensured by wind stochasticity.  相似文献   

7.
To study the transport of plaice (Pleuronectes platessa L.) eggs and larvae in the eastern Irish Sea, we constructed a 3D‐baroclinic physical model and coupled it to a particle‐tracking scheme that allowed aspects of larval behaviour to be simulated. Starting positions for eggs were based upon data from a series of ichthyoplankton surveys and final positions were compared with results of settled plaice distributions from two beam trawl surveys conducted on beaches around the eastern Irish Sea. If simulated larval behaviour was limited to passive drift or horizontal swimming, the particles diffused away from the spawning areas but failed to reach nursery grounds in significant numbers (85–90% remaining offshore). In contrast, switching on circatidal vertical swimming significantly increased the numbers of larvae reaching the coast (only 23–30% remained offshore). Particles tended to accumulate in bays and estuaries and this pattern compared well with the distribution of settled plaice from the field surveys. Studies in the southern North Sea (where spawning and nursery grounds are widely separated) have also demonstrated the importance of selective tidal stream transport for successful recruitment of settling plaice to nursery grounds. Although our understanding of the ontogeny of this behaviour is still poor, the model results presented suggest that this aspect of behaviour is a key factor influencing plaice settlement success.  相似文献   

8.
The South African chokka squid, Loligo reynaudi, spawns both inshore (≤70 m) and on the mid‐shelf (71–130 m) of the Eastern Agulhas Bank. The fate of these deep‐spawned hatchlings and their potential contribution to recruitment is as yet unknown. Lagrangian ROMS‐IBM (Regional Ocean Modelling System‐Individual‐Based Model) simulations confirm westward transport of inshore and deep‐spawned hatchlings, but also indicate that the potential exists for paralarvae hatched on the Eastern Agulhas Bank deep spawning grounds to be removed from the shelf ecosystem. Using a ROMS‐IBM, this study determined the transport and recruitment success of deep‐spawned hatchlings relative to inshore‐hatched paralarvae. A total of 12 release sites were incorporated into the model, six inshore and six deep‐spawning sites. Paralarval survival was estimated based on timely transport to nursery grounds, adequate retention within the nursery grounds and retention on the Agulhas Bank shelf (<200 m). Paralarval transport and survival were dependent on both spawning location and time of hatching. Results suggest the importance of the south coast as a nursery area for inshore‐hatched paralarvae, and similarly the cold ridge nursery grounds for deep‐hatched paralarvae. Possible relationships between periods of highest recruitment success and spawning peaks were identified for both spawning habitats. Based on the likely autumn increase in deep spawning off the Tsitsikamma coast, and the beneficial currents during this period (as indicated by the model results) it can be concluded that deep spawning may at times contribute significantly to recruitment.  相似文献   

9.
This study applied a previously used Lagrangian individual‐based model (IBM) for sardine in the Southern Benguela to an improved and more robust hydrodynamic model to investigate whether a more representative spatial coverage, greater horizontal and vertical resolution, more realistic winds and improved representation of mesoscale features such as eddies and filaments would give different results for transport and retention of early life stages. Despite major differences between the old and new hydrodynamic models, overall the IBM results were quite similar to the previous southern Benguela sardine IBM study. This surprising result indicates that it is the macroscale circulation features resolved by the two hydrodynamic models that are controlling transport and retention of sardine early life stages. The contribution of transient mesoscale features such as eddies and filaments appears to be less important when transport patterns are averaged over the 21‐year‐long experiment. Another aim of this study was to better estimate the contribution of south coast spawning to west coast sardine recruitment. This was possible because of an eastward extension of the geographical domain of the new hydrodynamic model which provided a more realistic representation of the south coast spawning ground. Three main spawning and nursery area systems, similar to those identified in the previous sardine IBM, were identified: west coast and west coast (WC‐WC), south coast and west coast (SC‐WC), and south coast and south coast (SC‐SC). Spawning area proved to be an important determinant of modelled retention and transport success, with spawning depth also playing an important role on the west coast. The main difference observed from the previous study was an increase in the average percentage of particles released on the south coast and transported to the west coast (P0, 17.4%). This indicates more connectivity between the southern and western sardine stocks than previously thought and is therefore important for fishery management. Standardized anomalies from the modelled retention/transport were compared with recruitment estimates from stock assessment models but there was no correlation between the two sets of anomalies. However, a significant correlation was observed between the modelled retention/transport anomalies for the west coast and total cumulative upwelling anomalies for the Southern Benguela (r = ?0.67, p < .001).  相似文献   

10.
Offshore‐ and deepwater‐spawning flatfish species face the problem of transport of their planktonic stages to shallow juvenile nursery grounds that are often far shoreward in bays or estuaries. We compare life history attributes of four offshore‐spawning flatfish species in the Gulf of Alaska: Pacific halibut (Hippoglossus stenolepis), arrowtooth flounder (Atheresthes stomias), rex sole (Glyptocephalus zachirus) and Dover sole (Microstomus pacificus) to examine how their larvae get from a spawning location at the edge or beyond the continental shelf to specific inshore nursery zones. We utilize historical records of survey catches of different life stages to characterize the stage‐specific changes in distribution of spawning, planktonic stages and juvenile nursery areas. We infer transport mechanisms based on the shifts in distribution of the life stages and in comparison with local physical oceanography. This comparison provides insight into the different mechanisms marine species may use to solve the common ‘problem’ of planktonic drift and juvenile settlement.  相似文献   

11.
Factors controlling the movement of fish larvae from coastal spawning environments to estuarine nursery areas are important to fish recruitment. In this paper, the role of physical processes in larval transport to estuarine nursery areas in the Aransas Pass region, Texas, is examined using a circulation model coupled with a fixed‐depth particle transport model. Two phases of transport are examined: transport on the shelf to the tidal inlet and transport through the inlet to estuarine nursery areas. Observed pulsing in the supply of red drum (Sciaenops ocellatus) larvae to the tidal inlet is significantly correlated with modeled particle supply. This pulsing is not correlated with a specific physical process, but results from the interaction of several factors affecting water movement, including low‐frequency variations in water level and wind forcing. Simulations suggest that the primary spawning region for red drum larvae that utilize nursery habitat in the Aransas Pass region is located north of the inlet. Patterns in the trajectories of particles that successfully enter the inlet reveal that they move alongshelf in the nearshore region and then move into the inlet, rather than moving directly across the shelf to the inlet. The approach path of particles outside the inlet determines the spatial transport patterns for inlets with branched channels and multiple bays. This study demonstrates that physical processes play an important role in determining larval supply to a tidal inlet.  相似文献   

12.
A growth and survival model of the early life stages was run along virtual drift trajectories tracked in a hydrodynamic model to simulate the annual recruitment process of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). These biophysical simulations concerning three different years were analysed in order to investigate the influence of environment and spawning dynamics on the survival of larvae and juveniles. The location of space–time survival windows suggested major environmental mechanisms involved in simulated recruitment variability at the different scales – retention of larvae and juveniles in favourable habitats over the shelf margins and turbulence effects. These small‐scale and meso‐scale mechanisms were related to the variations in wind direction and intensity during spring and summer. Survival was also variable according to the origin of the drift trajectories, that is spawning distribution in space and time. The observed spawning distribution (according to field surveys) was compared with the spawning distribution that would maximize survival (according to the biophysical model) on a seasonal scale, which revealed factors not considered in the biophysical model (e.g. spawning behaviour of the different age classes). The variation of simulated survival according to spawning distribution was examined on a multi‐annual scale and showed a coherent pattern with past and present stock structures. The interaction processes between the population (influence on spawning) and its environment (influence on survival) and its implications on recruitment and stock dynamics are discussed.  相似文献   

13.
Multiyear periods of relatively cold temperatures (2007–2013) and warm temperatures (2001–2005 and 2014–2018) altered the eastern Bering Sea ecosystem, affecting ocean currents and wind patterns, plankton community, and spatial distribution of fishes. Yellowfin sole Limanda aspera larvae were collected from the inner domain (≤50 m depth) of the eastern Bering Sea among four warm years (2002, 2004, 2005, 2016), an average year (2006), and three cold years (2007, 2010, 2012). Spatial distribution and density of larvae among those years was analyzed using generalized additive models that included timing of sea-ice retreat, areal coverage of water ≤0°C, and water temperature as covariates. Analyses indicated a combination of temperature effects on the location and timing of spawning, and on egg and larval survival, may explain the variation in larval density and distribution among years. During warm years, higher density and wider spatial distribution of larvae may be due to earlier spawning, an expansion of the spawning area, and higher egg and larvae survival due to favorable temperatures. Larval distribution contracted shoreward, and density was lower during cold conditions and was likely due to fish spawning closer to shore to remain in preferred temperatures, later spawning, and increased mortality. Predicted drift trajectories from spawning areas showed that larvae would reach nursery grounds in most years. Years when the drift period was longer than the pelagic phase of the larvae occurred during both warm and cold conditions indicating that settlement outside of nursery areas could happen during either temperature condition.  相似文献   

14.
Annual landings of chokka squid (Loligo reynaudii), an important fishing resource for South Africa, fluctuate greatly, and are believed to be related to recruitment success. The ‘Westward Transport Hypothesis’ (WTH) attributes recruitment strength to variability in transport of newly hatched paralarvae from spawning grounds to the ‘cold ridge’ nursery region some 100–200 km to the west, where oceanographic conditions sustain high productivity. We used an individual‐based model (IBM) coupled with a 3‐D hydrodynamic model (ROMS) to test the WTH and assessed four factors that might influence successful transport – Release Area, Month, Specific Gravity (body density) and Diel Vertical Migration (DVM) – in numerical experiments that estimated successful transport of squid paralarvae to the cold ridge. A multifactor ANOVA was used to identify the primary determinants of transport success in the various experimental simulations. Among these, release area was found to be the most important, implying that adult spawning behaviour (i.e., birth site fidelity) may be more important than paralarval behaviour in determining paralarval transport variability. However, specific gravity and DVM were found to play a role by retaining paralarvae on the shelf and optimizing early transport, respectively. Upwelling events seem to facilitate transport by moving paralarvae higher in the water column and thus exposing them to faster surface currents.  相似文献   

15.
Life cycle closure for species inhabiting areas with daily varying currents but directed net water transport requires specific behavior to minimize losses due to advection of passive drifting life stages. Variations in swimming activity of different‐sized Crangon crangon (15–65 mm total length) were therefore monitored under constant laboratory conditions immediately after being caught in the German Wadden Sea. Activity of shrimps of different sizes, caught at different seasons, always peaked at times corresponding with ebb tide in the habitat from where they were taken. This behavior was maintained for several days if no external stimuli were present but shifted to night activity if a light–dark cycle was provided. The observed behavior/activity pattern was included in a coupled hydrodynamic and individual‐based model (IBM) and the shift in the location of a shrimp cohort was monitored over time. Performance of ebb tide activity not only allowed the shrimps to reach the preferred deeper winter and spawning areas but also allowed them to migrate against the dominating current from eastern nurseries to more western located spawning areas. Passively drifting larvae released at these locations and later larval and juvenile stages that perform flood tide transport can reach the nurseries again. This links the nurseries and adult spawning grounds and closes the migration triangle.  相似文献   

16.
Plankton sampling was conducted in the Baltic to obtain sprat larvae. Their individual drift patterns were back‐calculated using a hydrodynamic model. The modelled positions along the individual drift trajectories were subsequently used to provide insight into the environmental conditions experienced by the larvae. Autocorrelation analysis revealed that successive otolith increment widths of individual larvae were not independent. Otolith increment width was then modelled using two different generalized additive model (GAM) analyses (with and without autocorrelation), using environmental variables determined for each modelled individual larval position as explanatory variables. The results indicate that otolith growth was not only influenced by the density of potential prey but was controlled by a number of simultaneously acting environmental factors. The final model, not considering autocorrelation, explained more than 80% of the variance of otolith growth, with larval age as a factor variable showing the strongest significant impact on otolith growth. Otolith growth was further explained by statistically significant ambient environmental factors such as temperature, bottom depth, prey density and turbulence. The GAM analysis, taking autocorrelation into account, explained almost 98% of the variability, with the previous otolith increment showing the strongest significant effect. Larval age as well as ambient temperature and prey abundance also had a significant effect. An alternative approach applied individual‐based model (IBM) simulations on larval drift, feeding, growth and survival starting as exogenously feeding larvae at the back‐calculated positions. The IBM results revealed optimal growth conditions for more than 97% of the larvae, with a tendency for our IBM to slightly overestimate larval growth.  相似文献   

17.
Fish eggs and larvae are often subject to very high mortality, and variation in early life survival can be important for population dynamics. Although longnose suckers (Catostomus catostomus) are widespread in northern North America, little is known about their early life history. We examined fecundity and early larval survivorship during sucker spawning events in three small Lake Michigan tributaries. Although egg deposition varied 25% among spawning events, estimated larval export to the lake varied over 25,000‐fold from around 1000 to 26 million. Based on variation in environmental conditions across years, it appears that spring flow and temperature may be important determinants of egg survival to larval outmigration. Larval age data suggest that most individuals that survived to outmigration hatched during a 2‐day period despite adult spawning across at least 10 days. Most larvae spent <2 weeks in the stream and emigrated around the time of transition from endogenous to exogenous feeding before substantial growth occurred. In two of three cases, larvae drifted exclusively at night; however, high drift rates occurred during both day and night in the case where larvae were very abundant, suggesting density‐dependent drift behaviour. Our results indicate that survival in tributary streams from egg deposition to larval export is highly variable in longnose suckers. These large differences in early life survival may translate into variability in recruitment, thereby influencing population structure and dynamics.  相似文献   

18.
Fish recruitment is the result of the integration of small‐scale processes affecting larval survival over a season and large oceanic areas. A hydrodynamic model was used to explore and model these physical–biological interaction mechanisms and then to perform the integration from individual to population scales in order to provide recruitment predictions for fisheries management. This method was applied to the case of anchovy (Engraulis encrasicolus) in the Bay of Biscay (NE Atlantic). The main data available to investigate survival mechanisms were past growth (otolith) records of larvae and juveniles sampled at sea. The drift history of these individuals was reconstructed by a backtracking procedure using hydrodynamic simulations. The relationships between (real) growth variation and variations in physical parameters (estimated by hydrodynamic simulations) were explored along the individual trajectories obtained. These relationships were then used to build and adjust individual‐based growth and survival models. Thousands of virtual buoys were released in the hydrodynamic model in order to reproduce the space–time spawning dynamics. Along the buoy trajectories (representative of sub‐cohorts), the biophysical model was run to simulate growth and survival as a function of the environment encountered. The survival rate after 3 months of drift was estimated for each sub‐cohort. The sum of all these survival rates over the season constituted an annual recruitment index. This index was validated over a series of recruitment estimations. The modelling choices, model results and the potential use of the recruitment index for fisheries management are discussed.  相似文献   

19.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

20.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号