首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colletotrichum acutatum causes anthracnose on peppers (Capsicum spp.), resulting in severe yield losses in Taiwan. Fungal isolates Coll-153, Coll-365 and Coll-524 collected from diseased peppers were found to differ in pathogenicity. Pathogenicity assays on various index plants revealed that Coll-524 was highly virulent and Coll-153 was moderately virulent to three commercially available pepper cultivars. Both isolates induced anthracnose lesions and produced abundant conidia. Coll-365 was only weakly virulent on pepper fruit, where it caused small lesions and hardly produced conidia on pepper fruit. However, Coll-365 was highly pathogenic to tomato fruit and mango leaves, where it caused anthracnose lesions and formed acervuli and conidia. All three isolates showed similar abilities in the attachment and germination of conidia, formation of highly branched hyphae and appressoria, penetration of cuticles, and infection of epidermal cells on chili peppers. Coll-365 accumulated less turgor pressure in appressoria but produced higher levels of cutinase and protease activity than Coll-153 and Coll-524 did. All three isolates invaded the neighbouring cells through plasmodesmata in chili peppers and showed similar pectinase or cellulase activities in culture. However, the most virulent strain Coll-524 expressed stronger laccase activity and was more resistant to capsaicin compared to Coll-153 and Coll-365. The three isolates are different in numbers and sizes of double-stranded RNAs. Depending on the cultivar genotypes, cellular resistance of chili pepper to C. acutatum might rely on the ability to restrict penetration, colonization, or conidiation of the pathogen. We conclude that the differences in pathogenicity among the three C. acutatum isolates of pepper are attributed to their ability to colonize the host plant.  相似文献   

2.
Early anthracnose caused by Colletotrichum acutatum has become an increasingly serious disease on green, unripe bell pepper fruit in Florida. This contrasts with earlier reports of anthracnose occurring on bell pepper primarily as a ripe-rot disease of mature, colored pepper fruit caused by Colletotrichum gloeosporioides. Management of anthracnose on green bell pepper fruit using fungicides and a commercial inducer of systemic acquired resistance, acibenzolar-S-methyl (ASM), was evaluated during three seasons. In two of the three trials, all the fungicides tested including azoxystrobin, fludioxonil + cyprodinil, mancozeb, famoxadone + cymoxanil, copper hydroxide, and ASM significantly increased the number of marketable fruit compared with control plants. These trials identified fungicides that could contribute to a successful pest management program on pepper for controlling anthracnose caused by C. acutatum. The cross-infectivity potential of C. acutatum was investigated on tomato and strawberry by in vitro and field inoculation. Anthracnose lesions formed readily on wound-inoculated detached fruits of all hosts in in vitro assays. Under field conditions, after inoculation, anthracnose lesions occurred on pepper fruit but no lesions of anthracnose were found on either ripe or unripe tomato or strawberry fruit in adjacent plots.  相似文献   

3.
Glomerella leaf spot (GLS), characterized by black necrotic spots and severe defoliation, is a destructive foliar disease of apple. Widely grown cultivars such as Gala and Golden Delicious are highly susceptible to GLS. Currently, the infection biology of the causal pathogen, Colletotrichum fructicola, on apple leaves is unclear. In the present study, the penetration and colonization processes of C. fructicola were characterized on apple (cv. Gala) leaves using light and transmission electron microscopy. C. fructicola conidia produced germ tubes 4 hours post-inoculation (hpi) and appressoria at 8 hpi. In melanized appressoria, funnel-shaped appressorial cones formed around the penetration pore. At 12 hpi, C. fructicola produced secondary conidia. After penetration, C. fructicola began to develop infection vesicles at 36 hpi. At 48 hpi, the primary hyphae of C. fructicola were produced from infection vesicles within host epidermal cells; the host epidermal cell plasma membrane remained intact, indicating a biotrophic association. Subsequently, secondary hyphae penetrated epidermal cells and destroyed cell components, initiating necrotrophic colonization. C. fructicola also produced biotrophic subcuticular infection vesicles and hyphae. Together, these results demonstrate that C. fructicola forms special infection structures and colonizes apple leaves in a hemibiotrophic manner, involving intracellular as well as subcuticular colonization strategies. Detailed characterization of the infection process of C. fructicola on apple leaves will assist in the development of disease management strategies and provide a foundation for studies of the molecular mechanism of the C. fructicola–apple leaf interaction.  相似文献   

4.
The potential of citronella essential oil for the management of chilli anthracnose caused by Colletotrichum acutatum was investigated. In in vitro tests, citronella essential oil inhibited mycelial growth at 0.25, 1.25 and 2.5 μL citronella/mL water, reduced conidial germination, and inhibited germ tube elongation at 1.25 μL/mL. Citronella essential oil applied as a protective or curative treatment to chilli cv. Django fruits reduced anthracnose infection. Efficacy of citronella essential oil was substantially effective to chemical fungicides and relatively superior to a biofungicide in both protective and curative tests. However, citronella essential oil at 2.5 μL/mL was phytotoxic to chilli fruits. Therefore, the most effective rate of citronella essential oil was at 1.5 μL/mL with inhibition of pathogen growth, reduction of anthracnose symptoms, and no observable phytotoxic response on chilli fruits. Citronella essential oil may be a viable alternative to chemical fungicides for the management of chilli anthracnose.  相似文献   

5.
Postbloom fruit drop (PFD) is caused by both Colletotrichum acutatum and C. gloeosporioides and is a potentially serious disease in citrus that occurs when flowering coincides with rainfall. The fungus incites necrotic lesions in petals and stigmas leading to premature fruit drop and reduced yield. The mechanisms of infection and survival of the causal agents remain to be fully elucidated. In the present study, we investigated the histopathology of PFD caused by C. acutatum in the petals and stigmas of sweet oranges using electron and light microscopy. In the petals, pathogen penetration occurred intra and intercellularly and also through the stomata, with intercellular penetration occurring most frequently. The distinct tissues of the petals were colonised, including the vascular system, particularly the xylem. Acervuli were observed on both sides of the petals. Although the fungus did not penetrate through the epidermal cells of the stigma, C. acutatum caused necrosis and an increase of phenolics in this tissue. A protective layer rich in lipophilic and phenolic compounds was formed under the necrotic area and crystals of oxalate were associated with the sites where the pathogen was present.  相似文献   

6.
Gilbertella persicaria is a pathogenic fungus recently reported as a causative agent of soft rot in papaya fruits. Here the interactions between G. persicaria and papaya fruits was analyzed under laboratory conditions using histological techniques and optical microscopy to elucidate the process of pathogenesis. Healthy and disinfested fruits of papaya cv. Maradol were also inoculated with a suspension of sporangiospores of G. persicaria. Tissue sections were cut, which were subjected to differential staining with safranin-fast green for different times. Sporangiospores presumably adhered to the cuticle of the fruit by 3 h post inoculation (hpi) and germinated by 6 hpi; invasive intracellular hyphae were growing in host cells by 9 hpi. By 15 hpi, fruit epidermis was macerated, presumably by enzymatic activity reported for mucoral fungal species and appeared as a wet-looking lesion on the cuticle. Fruit mesocarp was colonized by 30 hpi, and asexual reproduction structures had formed by 48 hpi. This process of infection and disease development of G. persicaria in papaya fruits corresponds to that used by pathogens with a necrotrophic lifestyle.  相似文献   

7.
Anthracnose is an important disease affecting mature olive fruits, causing significant yield losses, and poor fruit and oil quality. In Portugal, high anthracnose incidence was recorded during 2003–2007 with 41% of 908 orchards surveyed displaying disease symptoms. In another 14% of the orchards, the pathogen was recorded in symptomless plants. Disease severity was on average 36%, frequently reaching 100%. In Portugal, anthracnose is endemic to neglected orchards of susceptible cultivars, but under favourable conditions it can also severely affect less susceptible cultivars. Pathogens were genetically heterogeneous, with Colletotrichum acutatum genetic group A2 as the most frequent (80%), followed by group A4 (12%) and group A5 along with C. gloeosporioides (3–4%), while groups A3 and A6 of C. acutatum were sporadic. Important geographic variations were observed in the frequencies of these populations, accompanied by year‐to‐year populational shifts. Epidemiology and histopathology studies showed the presence of the pathogens on vegetative organs year‐round, particularly on olive leaves and branches, and on weeds. These represent inoculum reservoirs where secondary conidiation occurs, and conidia are then dispersed by spring rains reaching flowers and young fruits or by autumn rains reaching pre‐mature fruits. Unripe fruits were colonized without showing symptoms up to penetration of the cuticle, but further colonization and symptom production was completed only as fruits matured. These findings challenge current control practices, particularly the timing of fungicide treatment, and contribute to improved disease management.  相似文献   

8.
ABSTRACT Ultrastructural studies of the infection of susceptible and resistant cultivars of Sorghum bicolor by Colletotrichum sublineolum were conducted. Initial penetration events were the same on both susceptible and resistant cultivars. Germ tubes originating from germinated conidia formed globose, melanized appressoria, that penetrated host epidermal cells directly. Appressoria did not produce appressorial cones, but each penetration pore was surrounded by an annular wall thickening. Inward deformation of the cuticle and localized changes in staining properties of the host cell wall around the infection peg suggests that penetration involves both mechanical force and enzymic dissolution. In compatible interactions, penetration was followed by formation of biotrophic globular infection vesicles in epidermal cells. Filamentous primary hyphae developed from the vesicles and went on to colonize many other host cells as an intracellular mycelium. Host cells initially survived penetration. The host plasma membrane invaginated around infection vesicles and primary hyphae and was appressed tightly to the fungal cell wall, with no detectable matrix layer at the interface. Necrotrophic secondary hyphae appeared after 66 h and ramified through host tissue both intercellularly and intracellularly, forming hypostromatic acervuli by 114 h. Production of secondary hyphae was accompanied by the appearance of electron-opaque material within infected cells. This was thought to represent the host phytoalexin response. In incompatible interactions, infection vesicles and primary hyphae were formed in epidermal cells by 42 h. However, they were encrusted with electron-opaque material and appeared dead. These observations are discussed in relation to the infection processes of other Colletotrichum spp. and the host phytoalexin response.  相似文献   

9.
Microscopic investigations were conducted into the interaction of Colletotrichum acutatum on white and red strawberry (Fragaria ×ananassa) fruit surfaces. The results showed that, whilst the early interaction events were similar in both white and red fruits, after 24 h fungal colonization dramatically varied: in white fruits C. acutatum became quiescent as melanized appressoria, but on red fruits it displayed subcuticular necrotrophic invasion. A microarray analysis of white and red strawberries after 24 h of interaction with C. acutatum was performed, in order to reveal differences in gene expression possibly related to the different susceptibility of unripe and ripe fruits. Epi/catechin‐related genes and fatty acid metabolism genes, involved in the production of quiescence‐related molecules such as flavan‐3‐ols, proanthocyanidins and antifungal dienes, were found to be regulated during strawberry ripening, supporting a role for these molecules as preformed defence mechanisms. Besides several genes commonly regulated upon pathogen interaction, different genes were specifically transcribed only in white or red challenged fruits; a number of these, such as those coding for lectin and polyphenol oxidase, possibly account for specific pathogen‐induced responses. The putative biological role of these genes in the different susceptibility of fruits to C. acutatum is discussed.  相似文献   

10.
Six inoculation techniques were compared for their ability to evaluate resistance toColletotrichum acutatum of five strawberry cultivars. Inoculation by dipping the whole cold stored plants in a suspension of conidia adjusted to 2.106 conidia ml–1 made it possible to screen cultivars resistant to crown rot at 28 days after inoculation. Using the dipping technique, 44 strawberry cultivars were evaluated for their resistance to one strain ofC. acutatum, 1267b. Twelve of them did not show wilt symptoms and could be classified as resistant. When another strain ofC. acutatum, 494a, was inoculated to seven cultivars, all of them including Dover, resistant to 1267b, showed wilt symptoms. This result showed the importance of investigations on genotype × isolate interactions to conduct an efficient breeding programme for screening resistance toC. acutatum.  相似文献   

11.
To elucidate the functional roles of PR10 genes from two pepper species during plant-pathogen interactions, PR10 genes were isolated from fungal-resistant (Capsicum baccatum var. PBC80) and fungal-susceptible (C. annuum var. Yeoju) pepper fruits infected with anthracnose fungus (Colletotrichum acutatum). Despite strong nucleotide sequence identity, there were significant differences in the patterns of gene expression and protein accumulation between the genes from the two host species. Induced expression of the PR10 mRNA in PBC80 (bacPR10) was highly maintained from 24 h after infection (HAI) rather than that in Yeoju (annPR10). These mRNA expression patterns were correlated with the level of respective protein that was detected as two or three bands in each species. Substantial induction of bacPR10 proteins was confirmed by 2D-gel analysis followed by immunoblotting. Immunolocalization study showed that deposition of bacPR10 was exclusively observed in the pericarp of PBC80 fruits after fungal infection, suggesting functional significance in defence. Additionally, in vitro analysis of the enzymatic properties of PR10 proteins revealed that recombinant bacPR10 had higher ribonucleolytic activity and exhibited less sensitivity to proteinase treatment than did annPR10. Taken together, these results support the idea that relative abundance and prolonged longevity of bacPR10 in PBC80 fruits may contribute to their increased resistance in response to the anthracnose fungus, as compared with Yeoju fruit.  相似文献   

12.
Northern corn leaf blight (NCLB) caused by Setosphaeria turcica is a major foliar disease of maize. The early-stage infection events of this pathogen on maize leaves are unclear. We investigated the optimum temperature for conidial germination and appressorium formation, and characterized penetration and growth of S. turcica in maize leaf sheath and onion epidermis cells, including use of histological staining to assess plant cell viability. The results showed that the optimum temperature for conidial germination and appressorium formation was 20°C. On the maize leaf sheath, the appressoria were formed by germinated conidia, and penetration on the epidermal cells occurred at 8 h postinoculation (hpi). Round vesicles developed beneath the appressoria. Between 16 and 24 hpi, the branched invasive hyphae invaded three to five adjacent cells at most infection sites. The invasive hyphae tended to move along the cell wall and crossed from one cell to another. In the onion epidermis cells, the appressoria formed at 8 hpi, and in most cases the epidermal cells were penetrated through the juncture of the cell walls. At 16–24 hpi, the primary hyphal terminus swelled to a vesicle. The maize leaf sheath cells died at 8 hpi, whereas the onion cells did not. Our findings documented in detail the penetration and invasive hyphal growth in maize leaf sheath and onion epidermis, as well as viability of plant cells, at the early stages of infection, and provide a foundation for elucidating the underlying mechanism of S. turcica–maize interactions.  相似文献   

13.
Rumple is a serious peel collapse of Primofiori lemons in the southeast of Spain with an unresolved aetiology. Symptoms typically occur on fruits at ripening under wet conditions as dark sunken lesions producing premature fruit drop and damaged fruits unacceptable for fresh commercialization. A total of 16 Colletotrichum spp. isolates established from rumple-affected lemons collected during the autumn of 2007 from two different orchards were characterized by molecular and phenotypic assays and compared with reference isolates. Species-specific PCR reactions using β-tubulin 2 nucleotide sequences showed Colletotrichum gloeosporioides to predominate (81.5%) with limited occurrence of C. acutatum (18.75%). Among the C. gloeosporioides isolates, five (38.5%) showed benomyl resistance and eight (61.5%) were highly sensitive to the fungicide. The limited occurrence of C. acutatum could be related to factors such as the presence of both species on the same fruit, unfavourable meteorological conditions and low disease incidence. This work reveals an association of C. gloeosporioides and C. acutatum isolates with rumple disease of lemons and expands the range of C. acutatum on citrus.  相似文献   

14.
Kim KH  Yoon JB  Park HG  Park EW  Kim YH 《Phytopathology》2004,94(12):1295-1304
ABSTRACT Postharvest (detached) and in planta (attached) fruits of pepper plants, Capsicum annuum cv. Jejujaerae (susceptible) and Capsicum baccatum cv. PBC80 (resistant), inoculated with the anthracnose pathogen Colletotrichum gloeosporioides were examined using light, confocal laser scanning, and electron microscopy to compare the cytological differences between the compatible and incompatible interactions. In nonwound inoculation of postharvest pepper fruit, resistant pepper tissues showed a significant increase in the thickness of the cuticle layer compared with that of the susceptible and noninoculated fruit. Cytological features of programmed cell death (PCD) were observed in the resistant pepper fruit with postharvest inoculation, and these were characterized by positive responses to terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. The oligonucleosomal fragments of DNA were confirmed electrophoretically as DNA laddering. The PCD-positive responses occurred around the inoculation sites early in in planta wound inoculation in the resistant pepper. Nuclear modifications and structural changes of hypersensitivity were also observed in the resistant fruit, including separation of the plasma membrane from the cell wall, dilation of the endoplasmic reticulum, accumulation of electron-dense inclusions in vacuoles, and cytoplasmic vacuolization accompanying fragmentation of the cytoplasm. These structural changes may also implicate PCD-like host responses. In addition, in planta wound inoculation resulted in cell enlargement and cell division during the later stages of infection to form a periderm-like boundary layer around the inoculation site.  相似文献   

15.
荸荠茎点霉秆枯病菌侵染过程的超微观察   总被引:1,自引:0,他引:1  
<正>荸荠(Eleocharis dulcis),又称马蹄,为莎草科多年生草本植物,是一种具有食用和药用价值的水生蔬菜。近年来,随着荸荠在我国种植面积的不断扩大,病害发生也呈逐年上升趋势。荸荠茎点霉秆枯病是2009年在湖北省荸荠产区发现的一种新病害,由Phoma bellidis侵染引起,该病在湖北省团风地区发生尤为严重,对荸荠的产量和品质造成严重影响;病害一般在8~12月发生,发病初期在荸荠茎秆上产生圆形或梭形红褐色小斑,随后病斑沿茎  相似文献   

16.
The role played by certain factors, physical barriers and chitinase enzyme, associated with blister blight resistance in tea was investigated. The blister blight resistance of the tea clone SA-6 was due to higher amounts of epicuticular wax and increased thickness of cuticle/epidermal layer, functioning as physical barriers to hyphal penetration of Exobasidium vexans. Higher quantum of chitinase in intercellular spaces of palisade tissues was observed in the resistant clone SA-6 through immunolocalization study. Both chitinase assay as well as western blotting studies confirmed that the constitutive level of chitinase expression was higher in the resistant clone when compared with the susceptible tea clone.  相似文献   

17.
In October 2001, anthracnose caused by Colletotrichum acutatum Simmonds ex Simmonds was found on three-leaf akebia (Akebia trifoliata) in Saitama, Japan. This is the first report of anthracnose on three-leaf akebia caused by C. acutatum.  相似文献   

18.
The compatible interaction of pepper stems with Phytophthora capsici showed more rapid and severe disease development than did the incompatible interaction, although pathogen penetration styles of host cells in compatible and incompatible interactions were similar to each other. Treatment with -β-amino- n -butyric acid (BABA) protected the pepper plants against P. capsici infection. Reduced hyphal growth and sporangial formation were found after P. capsici infection in BABA-induced resistant and incompatible reactions. One of the most noticeable ultrastructural features of the BABA-induced resistant reaction was the formation of electron-dense wall appositions. The thick and dense wall appositions that encased the haustoria restricted haustorial development, thus leading to limitation of further pathogen penetration into inner plant tissues. A main host response in the incompatible interaction was the occlusion of cortical cells with an amorphous material. Plugging of the intercellular spaces in the cortical cells with electron opaque material was frequently observed in the incompatible interaction, but not in the compatible interaction. Another common feature of the BABA-induced resistant and incompatible reactions was degeneration of mitochondrial structure within penetrating hyphal cytoplasm. The mitochondrial structure in the BABA-induced resistant or incompatible reactions had no distinct double membrane layer and well-shaped cristae.  相似文献   

19.
Curry KJ  Abril M  Avant JB  Smith BJ 《Phytopathology》2002,92(10):1055-1063
ABSTRACT Ontogeny of the invasion process by Colletotrichum acutatum and C. fragariae was studied on petioles and stolons of the strawberry cultivar Chandler using light and electron microscopy. The invasion of host tissue by each fungal species was similar; however, each invasion event occurred more rapidly with C. fragariae than with C. acutatum. Following cuticular penetration via an appressorium, subsequent steps of invasion involved hyphal growth within the cuticle and within the cell walls of epidermal, subepidermal, and subtending cells. Both species of fungi began invasion with a brief biotrophic phase before entering an extended necrotrophic phase. Acervuli formed once the cortical tissue had been moderately disrupted and began with the development of a stroma just beneath the outer periclinal epidermal walls. Acervuli erupted through the cuticle and released conidia. Invasion of the vascular tissue typically occurred after acervulus maturation and remained minimal. Chitin distribution in walls of C. fragariae was visualized with gold-labeled wheat germ agglutinin. The outer layer of bilayered walls of conidia, germ tubes, and appressoria contained less chitin than unilayered hyphae in planta.  相似文献   

20.
Semi-thin sectioning and transmission electron microscope techniques were employed to investigate the cuticle thickness, integument structure, and fat body of larvae from susceptible and resistant strains of Bactrocera dorsalis. The results showed that the cuticle of β-cypermethrin-resistant strains (25.96 ± 1.00 μm) was thicker than that of susceptible strains (19.36 ± 0.82 μm). The number of chitin layers in the endocuticle of β-cypermethrin-resistant strains (98.00 ± 3.61 layers) was more than that in susceptible strains (75.67 ± 2.40 layers). Compared with susceptible strains, the laminated structure of the chitin layers in the endocuticle of resistant strains revealed higher density and more distinctive structure, and the interspace of epidermal cells was thicker. Fat body in the resistant insects contained more fat granules than those in susceptible insects. Moreover, HPLC analysis showed that the cuticular penetration of β-cypermethrin into larvae of resistant strains was slower than that of susceptible strains. In addition, the metabolism of β-cypermethrin in resistant strains was faster than that in susceptible strains, indicating that the resistant strains could enhance detoxification metabolism. These results indicated that cuticle thickness, fat body, laminated structure of the chitin layers, and interspace of epidermal cells might be correlated with cuticular penetration between susceptible and resistant strains, suggesting that the resistant strains could decrease the rate of penetration of insecticide into the internal cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号