首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the current study, we tested whether the addition of a small amount of crystalline dl ‐methionine to a fishmeal‐based diet would affect general sulphur metabolism and apparent digestibility in Atlantic salmon (Salmo salar). Triplicate tanks of salmon with mean BW of half a kilo were fed a control diet or the control diet supplemented with 0.2 wt%dl ‐methionine (+17% methionine relative to control diet) for a period of 3 months. Feed intake and thus nutrient intake did not differ significantly between treatments. Fish fed the diet supplemented with dl ‐methionine had 18% higher mean intake of methionine. The apparent energy digestibility was significantly improved in the salmon fed the methionine‐enriched diet as was the methionine digestibility. Salmon fed the methionine‐supplemented diet had about 32% higher plasma‐free methionine concentration and 25% more total homocysteine 5 h post prandial. No difference was observed in hepatic‐free methionine, but hepatic cystathionine (~62%) and taurine (~20%) were significantly higher in fish fed the methionine‐enriched diet due to a higher transsulphuration. In the liver, taurine might be conjugated to bile acids (BAs), and conjugation of BAs increases their solubility and enhances their biliary secretion affecting the digestibility. Both faecal and plasma BA concentrations were elevated in fish fed the methionine‐enriched diet, although the differences did not reach statistical significance. Taken together, our data show that feeding salmon a fishmeal‐based diet supplemented with a small amount of crystalline dl ‐methionine increased the apparent energy digestibility, possibly through an increased liver transsulphuration and taurine production, which might enhance BA conjugation and biliary secretion.  相似文献   

2.
Atlantic salmon fed diets devoid of fishmeal but added 0.5 g  kg?1 fish protein concentrate (FPC) showed reduced growth and lipid deposition without affecting protein accretion as compared to fish fed a fishmeal‐based control diet. The aim of the current study was to assess whether higher inclusion of FPC improved the growth and lipid deposition of Atlantic salmon (initial body weight 380 g) fed high plant protein diets. Quadruplicate groups of fish were fed diets containing 200 g kg?1 fishmeal of which was replaced with FPC (150, 112, 75, 38 and 0 g kg?1) for a period of 79 days. The rest of the diet protein was a mixture of plant proteins. The lipid source used was fish oil. A fishmeal‐based diet was included as a positive control for growth performance. None of the test diets differed from the positive control‐fed fish in voluntary feed intake, growth performance or nutrient accretion. Thus, the test diets were found appropriate to assess the effect of FPC inclusion. Replacement of fishmeal with increasing concentration of FPC did not affect voluntary feed intake (P = 0.56), but growth performance decreased (P = 0.02) resulting in an increased feed conversion ratio (P = 0.003). Viscerosomatic index decreased as diet FPC inclusion increased (P = 0.012) without affecting the dress out weight (P = 0.08). Thus, the apparently improved growth in fish fed the diets with the low FPC inclusion was because of a higher visceral mass. Possible reasons for the reduced visceral mass following addition of FPC to high plant protein diets are discussed.  相似文献   

3.
We evaluated the effect of a diet containing insect meal and insect oil on nutrient utilization, tissue fatty acid profile and lipid metabolism of freshwater Atlantic salmon (Salmo salar). Insect meal and insect oil from black soldier fly larvae (Hermetia illucens, L.; BSF), naturally high in lauric acid (12:0), were used to produce five experimental diets for an eight‐week feeding trial. 85% of the dietary protein was replaced by insect meal and/or all the vegetable oil was replaced by one of two types of insect oil. A typical industrial diet, with protein from fishmeal and soy protein concentrate (50:50) and lipids from fish oil and vegetable oil (33:66), was fed to a control group. The dietary BSF larvae did not modify feed intake or whole body lipid content. Despite the high content of saturated fatty acids in the insect‐based diets, the apparent digestibility coefficients of all fatty acids were high. There was a decrease in liver triacylglycerols of salmon fed the insect‐based diets compared to the fish fed the control diet. This is likely due to the rapid oxidation and low deposition of the medium‐chain fatty acid lauric acid.  相似文献   

4.
Many studies have evaluated the adequacy of alternate ingredient diets for Atlantic salmon, Salmo salar, mainly with focus on fish performance and health; however, comprehensive analysis of fillet quality is lacking, particularly for salmon fed these diets in recirculation aquaculture systems (RAS). To this end, a study was conducted comparing fillet quality and processing attributes of postsmolt Atlantic salmon fed a fishmeal‐free diet (FMF) versus a standard fishmeal‐based diet, in replicate RAS. Mean weight of Atlantic salmon fed both diets was 1.72 kg following the 6‐mo trial and survival was >99%. Diet did not affect (P > 0.05) processing and fillet yields, whole‐body proximate composition(fat, moisture, protein), fillet proximate composition, cook yield, fillet texture, color, or omega‐3 fatty acid fillet content, including eicosapentaenoic acid and docosahexaenoic acid levels. Whole‐body ash content was greater in salmon fed the FMF diet. The FMF diet resulted in a wild fish‐in to farmed fish‐out ratio of 0:1 per Monterey Bay Aquarium's Seafood Watch criteria due to its fishmeal‐free status and use of lipids from fishery byproduct. Overall, fillet quality and processing attributes were generally unaffected when feeding a diet devoid of fishmeal to postsmolt Atlantic salmon cultured in RAS. [Correction added on 7 September 2017, after first online publication: the P value in Abstract has been changed from “P < 0.05” to “P > 0.05”.].  相似文献   

5.
Atlantic cod (Gadus morhua), initial weight 15 g, were fed ten experimental diets for 15 weeks. The diets were based on a mixture of plant proteins (PP) and fish meal (FM), where PP constituted 65% of dietary protein. PP mixtures were chosen to reach as low levels of lysine and methionine as possible. The diets were supplemented with increasing amounts of lysine (19.2–31.9 g kg?1 diet) or methionine (9.4–12.3 g kg?1 diet), in a regression design. No growth difference among diet groups was found in the plant‐based diets. Increased dietary lysine resulted in decreased liver size, plasma triacylglycerol concentration (TAG) and lipid productive value (LPV). Methionine additions did not result in changed Hepatosomatic index (HSI), LPV or plasma TAG. Feed conversion ratio (FCR) and protein utilization were neither affected by lysine nor methionine. Plasma and muscle concentrations of free lysine and methionine correlated with dietary levels 5‐h post feeding. Overall conclusion was that cod maintain growth rates in plant‐based diets if dietary protein was high, without additional supplements of crystalline lysine or methionine. Lysine intake significantly influenced lipid metabolism, showing the necessity to add lysine in plant protein‐based diets to hinder increased lipid deposition. No such effects were found because of lack of methionine additions.  相似文献   

6.
We previously reported that juvenile Atlantic salmon with mean initial BW 11.5 g offed a methionine deficient diet had lower weight gain due to a reduced protein accretion, while lipid gain was unaffected. Muscle of the fish fed the methionine deficient diet was depleted for sulphur amino acids, while in liver, the concentration of these metabolites was maintained within narrow limits. We speculated whether this could be due to an increased muscle proteolysis to support a prioritized liver metabolism in fish fed the low methionine diets. In this study, we assessed whether genes associated with muscle proteolysis increased under methionine deficiency. The composition of the diets was similar to those used previously containing 1.6 or 2.1 g Met/16 g N. We confirmed that the fish fed the low methionine diet gained less protein compared to fish fed the DL‐methionine enriched diet (P = 0.014), but growth did not reduce significantly. Also the deficient fish maintained the concentrations of liver sulphur amino acids and reduced muscle free methionine. Several of the other free amino acids within muscle increased. Further, methylation capacity was maintained in liver but reduced in the muscle (P = 0.78 and 0.04, respectively). Gene expression of muscle IGF‐1 was lower (P = 0.008) and myosin light chain 2 tended (MLC2, P = 0.06) to be reduced in fish fed low methionine diet, concurrently the activity of cathepsins B+L increased (P = 0.047) in muscle of fish fed the low methionine diet. Gene expression of the muscle‐specific E3 ubiquitine ligases (Murf and MaFbx) was not affected by treatment. Thus, the lower protein gain observed in fish fed the low methionine diet may be caused by reduced protein synthesis in line with the reduced IGF‐1 gene expression in the white trunk muscle. Thus, to support metabolism, the dietary protein needs to be balanced in amino acids to support metabolism in all compartments of the body and secure maximal protein gain.  相似文献   

7.
A growth trial was performed with gilthead sea bream juveniles (Sparus aurata) to evaluate the effect of diet supplementation with white tea and methionine on fish performance and lipid metabolism. For that purpose, four diets were formulated: a fish meal–based diet (Control) and diets identical to the control diet but supplemented with 2.9 % white tea (Tea), 0.3 % methionine (Met) or 2.9 % white tea plus 0.3 % methionine (Tea + Met). Growth performance and feed efficiency parameters, whole-body and liver composition, plasma metabolites concentration and liver glucose 6-phosphate dehydrogenase (G6PDH), malic enzyme (ME) and fatty acid synthetase (FAS) activities were determined. Feed intake was higher in fish fed methionine–supplemented diets, whereas this parameter and growth was decreased in fish fed white tea supplementation. Feed efficiency and protein efficiency ratio were not affected by diet composition. Plasma HDL cholesterol and total lipids concentration were higher in fish fed white tea–supplemented diets. Whole-body lipid, plasma glucose, liver glycogen concentration and liver G6PDH, ME and FAS activities were lower in fish fed white tea–supplemented diets. Results of the present study indicate that methionine seems to act as a feed attractant in diets for sea bream juveniles. Additionally, white tea is an important modulator of lipid metabolism in sea bream juveniles.  相似文献   

8.
Atlantic salmon with body weight of 493 g were fed 6 graded levels of methionine in diets based on plant proteins for a period of 85 days with the aim to test whether methionine intake affected growth, nutrient accretion and hepatic sulphur metabolism. A negative control based on a mixture of plant proteins with low fish meal inclusion (5%) containing 1.64 g methionine 16 g− 1 N was added five levels of dl-methionine resulting in dose levels from 1.64 to 2.98 g methionine 16 g− 1 N. A control feed based on fish meal (26%) and plant proteins (44.9%) containing 2.30 g methionine 16 g− 1 N was used as a control for growth performance. Feed intake and thus growth was generally lower in fish fed the plant protein based diets, while digestibility of amino acids was higher in fish fed the test diets as compared to those fed the fish meal based positive control diet. However, no significant differences in either feed intake or growth were present in fish fed either of the test diets containing graded levels of methionine. Neither carcass protein or lipid retention was affected by methionine intake as confirmed by the unaffected mRNA levels of growth hormone-insulin-like growth factor in hepatic and muscle tissues. Hepatic size as well as transsulfuration was significantly affected by methionine intake. Thus it is concluded that nutrient accretion was not the main effect of methionine intake (ranging from 35 to 90 mg fish− 1 day− 1). Rather methionine is essential to secure high synthesis of activated methyl groups for methylation reactions ensuring a healthy fish not developing increased liver size. Intakes exceeding 60 to 70 mg methionine daily in the fast growing seawater period results in increased transsulfuration analysed as increased hepatic taurine production keeping the hepatic free methionine constant at all intakes.  相似文献   

9.
This experiment aimed to test the interaction of lysine limitation with nutrient accretion and muscle carnitine depot in Atlantic salmon. Fish were fed adequate or low‐lysine diets for 3 months. Lysine intake was significantly less (48%) in fish fed the low‐lysine diet as compared with that fed the adequate one. There was no difference in dietary amino acids between treatments, with the exception of lysine. The lower lysine intake was reflected in plasma free lysine being 52% less while the free lysine concentration in the liver and muscle were unaffected. Although there was no significant difference between voluntary feed intakes among treatments, fish fed the low‐lysine diet had reduced growth, protein and energy deposition as compared with fish fed the adequate lysine diet. White trunk muscle contained more glycogen and less protein in fish fed the low‐lysine diet while no difference in lipid was observed. The livers from fish fed the low‐lysine diet contained less glycogen and slightly more fat and protein than the livers from fish fed the adequate lysine diet. Lysine limitation reduced carnitine in the liver without affecting muscle carnitine depot. Thus, low‐lysine diets did not likely affect the fatty acid oxidation capacity. This fact was supported by unaffected fatty acid profiles and lipid classes between treatments during the 3‐month study. In conclusion, lysine limitation does not deplete the muscle carnitine depot during the on‐growing seawater phase of Atlantic salmon, but affects the deposition pattern of nutrients.  相似文献   

10.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

11.
Fishery processing by‐products are a large resource from which to produce fishmeal and other products for a variety of uses. In this study, testes meal (TM) produced from pink salmon processing by‐product was evaluated as a functional ingredient in aquafeeds. Nile tilapia and rainbow trout fry were fed five isonitrogenous and isoenergetic experimental diets for 4 and 9 weeks respectively. Two diets were fishmeal‐based (FM) and three were plant protein‐based (PP). Salmon TM was added to the FM and PP diets at 7% to replace 20% of fishmeal protein (FMTM and PPTM respectively). An additional control diet was prepared in which fishmeal was added to the PP diet to supply an equivalent amount of protein as supplied by TM (PPFM). Inclusion of TM in both the FM‐ and PP‐based diets resulted in higher final body weights, although differences were only significant between rainbow trout fed FM or FMTM diets. Similar differences were calculated for other indices of fish performance, e.g. specific growth rate, feed conversion ratio, protein efficiency ratio and protein retention efficiency. Feed intake was significantly higher for fish fed FMTM compared with FM in rainbow trout. For tilapia, final weights were numerically higher, but not significantly different for fish fed diets containing TM compared with non‐TM diets (FM vs. FMTM; PP vs. PPTM). Performance of trout or tilapia fed the PPFM diet did not increase compared with the PP diet. The results indicate that TM addition to both FM and PP diets increased feed intake and also increased metabolic efficiency, demonstrating that TM can be a functional ingredient in aquafeeds.  相似文献   

12.
Abstract— A pair of experiments were performed to assess amino acid supplementation of pet food grade poultry by‐product meal for utilization as the sole protein source for hybrid striped bass Morone chrysops×M. saxatilis. The first experiment determined the available amino acids from menhaden fishmeal and poultry by‐product meal for hybrid striped bass. The second experiment determined the efficacy of supplementing poultry by‐product meal with amino acids based on an ideal amino acid profile of hybrid striped bass muscle. The positive control diet contained 40% digestible protein solely from menhaden fishmeal and the negative control diet contained 40% digestible protein solely from pet food grade poultry by‐product meal. The negative control diet was additively supplemented with lysine, methionine, threonine, and leucine at 1.16,0.57,0.31 and 0.47% of the diet, respectively. Lysine supplementation alone did not improve fish performance based on any measured response. Moreover, the negative control diet and the lysine supplemented diet had lower weight gain and feed efficiency than the positive control diet. Supplementation of the diet containing pet food grade poultry by‐product with lysine and methionine; lysine, methionine, and threonine; or lysine, methionine, threonine, and leucine improved weight gain and feed efficiency above that of the negative control diet. The diet containing poultry by‐product supplemented with lysine, methionine, and threonine produced weight gains statistically indistinguishable from those of the positive control diet. Protein and energy retention efficiencies also improved with supplementation of at least lysine and methionine and were statistically indistinguishable from those observed in fish fed the positive control diet. Supplementation with lysine and methionine reduced the hepatosomatic index to levels similar to those found in fish fed the menhaden fishmeal diet. Intraperitoneal fat levels were similar among treatments (6.1‐6.6%) with the exception that fish fed the diet supplemented with lysine, methionine, and threonine exhibited lower (5.5%) fat levels. Supplementing the poultry by‐product meal diet with only lysine and methionine increased muscle ratio to levels equivalent to those found in fish fed the positive control (fishmeal) diet. In conclusion, amino acid supplementation of pet food grade poultry by‐product meal can be used to replace fishmeal in diets for hybrid striped bass without a reduction in fish performance.  相似文献   

13.
Phosphatidylcholine is synthesized endogenously through the enzyme phosphatidylethanolamine–methyl transferase. As endogenous choline synthesis requires methyl groups from S‐adenosylmethionine (SAM), the endogenous synthesis of choline may depend on SAM availability. SAM availability depends on methionine and ATP. SAM is also a precursor for cysteine and may affect taurine and glutathione concentrations. To investigate whether choline synthesis or transsulphuration is prioritized and the interactions between taurine and choline supplementation when methionine availability is low, juvenile Atlantic salmon were fed low methionine diets with and without taurine and choline supplementation. There were no differences in growth or protein accretion following treatments. Fish fed the low methionine diets did not develop a fatty liver, but choline supplementation increased the concentration of total phospholipids in liver and muscle. Taurine supplementation increased taurine concentrations in liver and muscle, but no interactions with choline were present. Liver SAM was unaffected by treatments. Two of three tanks fed the low methionine diet without choline and taurine supplementation had a higher gene expression of p38MAPK (mitogen activated phosphokinase). Choline supplementation to low methionine diets thus may have beneficial effect on the metabolic health and lipid transport to extra‐hepatic tissues. Taurine supplementation had no effect on phospholipids status, but increased taurine concentration in tissues and as such may affect oxidation status when methionine availability is low.  相似文献   

14.
ABSTRACT:   To elucidate the hemolytic suppression roles of taurine and the necessity of dietary taurine supplementation in yellowtail Seriola quinqueradiata fed a diet without fishmeal, juvenile fish with an initial body weight of 250 g were fed for 40 weeks in floating net cages on soybean protein diets supplemented with 0, 3.0, 4.5 and 6.0% taurine. Taurine concentration of the experimental diets were 0.03, 33.9, 52.8 and 71.6 mg/g, respectively. On the 21st week, fish fed the taurine unsupplemented diet had inferior growth and feed performances, higher death, and there were incidences of green liver and hemolytic anemia. In this group, hepatic and plasma taurine concentrations, serum osmolality and osmotic tolerance of erythrocytes (EC50 value) were significantly lower, and plasma hydroperoxide concentration was markedly higher than in the taurine supplemented groups. These conditions markedly improved corresponding with the increase of dietary taurine concentration. These results indicate that taurine plays a role in hemolytic suppression through osmoregulation and biomembrane stabilization in fish. In addition, it is suggested that yellowtail requires dietary taurine as an essential nutrition for maintaining physiological condition normally.  相似文献   

15.
Juvenile channel catfish (5.6 g/fish) were fed a basal diet that contained major protein (soybean meal, cottonseed meal) and energy (ground corn grain, wheat middlings) ingredients that were derived from plant sources. The basal diet was supplemented with three levels of crystalline taurine to provide 1, 2 and 5 g/kg taurine. In addition, a fifth diet that contained 80 g/kg menhaden fishmeal formulated with the same plant‐source ingredients was included as the positive control diet. Fish were fed the five diets once daily for 12 weeks. Weight gain was highest in catfish fed taurine at 2 g/kg (47.8 g/fish) compared to catfish fed the control basal diet (40.8 g/fish) and 80 g/kg fishmeal diet (41.1 g/fish) (< .05). Among the taurine‐supplemented diets, weight gain was lowest in catfish fed taurine at 5 g/kg. Feed conversion ratio (FCR) was significantly improved in fish fed diets supplemented with taurine at 2 g/kg compared to all other treatments (< .01). Survival during the growth study ranged from 98.0 to 99.0% (> .05) for all treatments. The results suggest taurine supplementation to juvenile channel catfish may improve weight gain and FCR.  相似文献   

16.
Methionine–choline‐deficient (MCD) mammals are known to accumulate liver TAG probably due to phosphatidylcholine (PC) deficiency and thus assembly of VLDL and transport of lipids from liver to peripheral organs. To assess whether supplementation of choline could spare methionine and secure a healthy liver metabolism, by reducing the endogenous PC synthesis without interfering with lipid transport and distribution, Atlantic salmon with initial BW of 700 g were fed adequate (1.9 g Met/16 gN) or surplus methionine (2.5 g Met/16 gN) diets of which were supplemented with choline or not for a period of 19 weeks. Fish fed the low‐methionine diets had reduced growth (p = .013) due to reduced protein gain (p = .007), while lipid gain slightly improved in fish fed the choline‐supplemented diets (p = .047). Also, feed conversion improved when fed surplus methionine (p < .001), while choline supplementation had no impact on feed conversion. No interaction between choline and methionine on growth performance or retention existed. Phospholipid status in liver and muscle was not affected by treatments, and no liver TAG accumulation occurred at the methionine levels used. Gene expression of ApoB100 necessary for assembling VLDL or pemt necessary for endogenous PC synthesis was unaffected by treatments. Capacity of methylation (MAT, BHMT) within the liver was not affected by treatment nor was the gene expression of enzymes in liver transsulfuration (CBS or CDO). Methionine status within liver was unaffected by treatments, while free methionine reduced in those fish fed the low‐methionine diets in muscle and plasma. Cystathionine and taurine were elevated when fed surplus methionine. Choline supplementation had no impact on sulphur amino acid metabolites in either tissue. Neither did choline supplementation improve TAG mobilization from liver to muscle. To conclude, choline does not improve endogenous phospholipid synthesis or transport of TAG from liver to muscle depot when added to diets containing 1.9 g Met/16 gN, while surplus methionine improved growth and protein retention, indicating that 1.9 g Met/16 gN is enough to support a healthy liver metabolism, but too low to support muscle protein deposition in adult salmon fed high plant protein diets for longer periods of time.  相似文献   

17.
The main objective of this study was to evaluate the effect of methionine supplementation when reducing fishmeal levels in diets for white shrimp (Litopenaeus vannamei). Tested diets consisted of a positive control with 260 g/kg fishmeal (D1), two negative controls with 100 g/kg fishmeal and no amino acid (AA) supplementation (D2) or supplemented with lysine but not methionine (D3), and four additional diets with 100g/kg fishmeal supplemented with increasing levels of DL‐Met (1.0, 2.0 or 3.0 g/kg) (D4, D5, D6) or Met‐Met (1.0 g/kg) (D7). Each diet was fed to four groups of 30 shrimp for 8 weeks at a daily rate of 70 g/kg body weight. Reduction in fishmeal from 260 g/kg down to 100 g/kg did not significantly affect survival rate, feed conversion ratio (FCR), protein efficiency ratio (PER) or protein retention efficiency (PR%) of white shrimp. However, growth performance (final body weight, FBW; weight gain, WG; specific growth rate, SGR) was reduced when dietary fishmeal level was reduced from 260 g/kg (D1) to 100 g/kg without methionine supplementation (D2). The growth performance (FBW, WG and SGR) of shrimp was significantly increased by supplementation of the 100 g/kg fishmeal diet with increasing levels of DL‐Met (< .05). Same performance as positive control (D1) was achieved with diets containing 100 g/kg fishmeal and supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. The highest values of growth performance (FBW, WG and SGR) were found in shrimp fed D6 and D7 diets, which were significantly higher than those of shrimp fed D2 and D3 diets (< .05) but without statistical differences with shrimp fed D1, D4 and D5 diets (> .05). The highest values of whole‐body and muscle protein contents were found in shrimp fed D1 diet, which were significantly higher than those of shrimp fed all other diets (< .05). The highest value of intestinal tract proteolytic enzyme activity was found in shrimp fed Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) and 3 g/kg DL‐Met‐supplemented diet (D6) (< .05). The highest values of apparent digestibility coefficients (ADCs) of dry matter and crude protein were found in Met‐Met‐supplemented diet (D7) and followed by the positive control diet (D1) (< .05). Shrimp fed the D1 diet showed the highest value of total essential amino acid (EAA) and was significantly higher than shrimp fed D2–D3 (< .05) but without significant difference with shrimp fed D4–D7 (> .05). In conclusion, results showed that same performance can be achieved with diets containing 260 or 100 g/kg fishmeal supplemented with 3.0 g/kg DL‐Met or 1.0 g/kg Met‐Met. Moreover, supplementation of limiting methionine in low‐fishmeal diets seems to improve the digestive proteolytic activity, improving digestibility of dry matter and protein, and eventually to promote growth of juvenile white shrimp in fishmeal reduction diets.  相似文献   

18.
A 12‐week feeding trial was conducted using Nile tilapia, Oreochromis niloticus (L.) to evaluate the interactive effects of fishmeal replacement and salinity on growth, feed utilization efficiencies and relative expression of growth related genes. Two iso‐nitrogenous and iso‐energetic diets were prepared (32% protein). The control diet included 15% fishmeal (FM diet) and fishmeal component in non‐fishmeal diet (NFM) was eliminated by a mixture of poultry by‐product meal, high protein distillers dried grains and distillers dried grains with soluble. The NFM diet was supplemented with DL‐methionine and L‐lysine. Duplicated group of fish with initial mean weight of 6 g, reared in four salinity levels (0, 4, 8 and 12 g/L) were fed one of the two diets twice a day to near satiety. At the end of the experiment, growth, feed utilization efficiency and expression of growth related genes were compared. The specific growth rate (SGR), mean feed intake (MFI) and feed conversion ratio (FCR) were not affected by the diets while salinity effects were significant. The fish in the 4 g/L salinity showed the highest SGR and MFI while fish in the 0 g/L treatment showed the lowest FCR. Relative expression of hepatic IGF‐I and IGF‐II was regulated by salinity but not by the diet. Expression of growth hormone receptor gene was not affected by either diet or salinity. The present findings provide evidence for the possibility of total fishmeal replacement in saline waters (0–12 g/L) without compromising growth, feed utilization and body composition of Nile tilapia.  相似文献   

19.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

20.
Replacement of fish meal with plant products in aquafeeds results in the elimination of dietary compounds which may be important for optimal growth and physiology. A study was conducted to determine if supplementation with macro‐minerals and/or inositol would improve performance of rainbow trout (Oncorhynchus mykiss) fed a plant‐based diet. Four iso‐caloric and iso‐nitrogenous diets (40 g kg?1 protein and 15 g kg?1 lipid) were formulated and consisted of a fish meal‐based control diet (control) and three plant‐based experimental diets. Plant‐based diets were supplemented with either macro‐minerals and inositol (+MM+I), no macro‐minerals with inositol (?MM+I), and no macro‐minerals and no inositol (?MM?I). Sodium chloride, potassium chloride and magnesium oxide were the sources used in the macro‐mineral premix. There was no effect of diet on survival, but there was an effect of diet on weight gain, FCR, feed intake, HSI and nutrient retentions. Significant liver pathology was observed in trout fed plant‐based diets without MM supplementation. Supplementation of MM and inositol significantly improved weight gain of trout fed a plant‐based diet. Supplementation of MM and/or inositol also improved PRE and ERE. This study demonstrates the importance of supplementing these nutrients to trout fed fish meal free diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号