首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Essential fatty acids should be included in the diet to ensure adequate fish growth. Despite the great number of studies on fatty acid nutrition of fish, there are still several unknowns. The aim of the present study was to investigate fatty acid nutrition of jundiá, a Latin American freshwater catfish. Four diets were formulated containing (i) coconut oil (?C, negative control), (ii) coconut oil + high‐docosahexaenoic‐acid‐fish oil (+C, positive control) and coconut + sunflower + linseed oils at different ratios, producing either (iii) a diet rich in linoleic acid (LA) (HighLA) or 4) a diet low in LA (LowLA). All diets contained significant amounts of saturated fatty acids (at least 57.5% total fatty acids in HighLA) and monounsaturated fatty acids (at least 19.1% total fatty acids in ?C). Diets were fed to jundiá fingerlings (1.5 g) for 70 days; growth, body composition and liver histology were evaluated. The ?C diet, without essential fatty acids, promoted significantly lower fish growth, body fat accumulation and hepatic lipidosis. Fish fed HighLA and LowLA diets presented similar growth as fish fed +C diet. These findings suggest that diet formulations for jundiá catfish fingerlings can include only plant oils without negative effect on growth, survival, body composition, fish health or parameters of feed utilization (ingestion rate and protein utilization).  相似文献   

2.
Lipids include some of the most important nutrients that affect the survival and growth of fishes in their early life stages. Lipid deficiency prior to spawning may significantly reduce egg production, hatchability and the number of surviving larvae. In this study, we investigated the effects of isocaloric diets containing 80, 140 and 200 g kg−1 of lipids (lipid source, soy oil) for 90 days. The following data were collected at 0, 45 and 90 days: final weight; length; conditioning factor; hepatosomatic, gonadosomatic and visceral fat indices; total plasma protein; testosterone; 17ß‐estradiol; free amino acids; and ovary and muscle fatty acid profiles. Additionally, fecundity, oocyte production, egg morphometric parameters, and larval and postlarval growth were evaluated. Results were not statistically different for husbandry and biochemical parameters, but visceral fat content increased with increase in dietary lipid levels. The fatty acid profiles and composition differed among dietary treatments. The egg diameter and area were significantly low in fish fed the 200 g kg−1 lipid diet, thereby hindering growth, survival and weight compared to those in postlarval fish (< 0.05). The best reproductive rates were obtained when using diets containing 80–140 g kg−1 total lipids.  相似文献   

3.
We evaluated the growth and survival rate of sterlet (Acipenser ruthenus) larvae fed Artemia nauplii enriched with Olioω3 or Red Pepper commercial emulsions (BernAqua NV, Belgium). Sterlet larvae, 0.022 ± 0.002 g body weight, were randomly assigned to one of three feeding regimes with two different feeding durations. After administering live feed for 7 or 14 days, larvae were weaned onto commercial food and reared to 36 days posthatching (28 days of feeding). There were no significant differences in body weight among groups at the end of the trial. A significantly higher survival rate (p < 0.05) was observed in larvae fed Artemia enriched with Red Pepper for 14 days compared to other feeding regimes. Based on the analysis of growth parameters, we can conclude that 7 days of live feeding to be sufficient for efficient rearing of sterlet larvae. And longer duration of live feeding with use of special enrichment can be recommended for a higher survival rate.  相似文献   

4.
The energy budget of the Japanese flounder Paralichthys olivaceus (Temminck & Schlegel) larvae fed enriched (EA) and non‐enriched (NEA) Artemia nauplii was determined by equating energy intake (EI) with the summation of energy channelled to faeces (F), metabolism (M), excretion (U) and growth (G). Larvae (21 days post hatching, 2.2 mg mean wet wt) were reared in six 80‐L circular tanks with three replicates of 160 larvae per tank and fed EA and NEA for 20 days. EI was calculated from the energy content of consumed nauplii, M from the summation of energy for routine, feeding and active metabolisms, U from ammonia excretion and G from energy gained based on weight gain, while F was the difference between EI and the total of other components. The heat increment of larvae was calculated from the difference of O2 consumption at post‐prandial and routine conditions. Except for G and F, variables were correlated to the dry body weight (W) of larvae in a power function: Y=aWb. Coefficients a and b were estimated by regression after a logarithmic transformation of the raw data. Overall, growth and survival rates of the larvae fed EA were higher than those fed NEA. For a larval flounder growing from 2 to 20 mg wet wt, the ingested energy was partitioned as follows: 22.8% to faecal loss, 38.3% to metabolism, 1.5% to urinary loss and 37.4% to growth for the EA group, whereas 35.4% to faecal loss, 28.4% to metabolism, 1.3% to urinary loss and 34.9% to growth for the NEA group. Gross conversion and assimilation efficiencies were higher, but the net conversion efficiency was lower in EA‐fed larvae than NEA‐fed larvae. This study suggests that the higher growth and survival rates of the EA‐fed group compared with the NEA‐fed group were attributed to their higher intake of essential fatty acids, higher metabolism and lower energy loss of faeces.  相似文献   

5.
6.
The effects of the density and type of food on oxygen consumption and ingestion rate of larvae of the white shrimp Penaeus setiferus fed diatoms Chaetoceros ceratosporum, flagellates Tetraselmis chuii and Artemia franciscana nauplii were analysed. Diatoms, flagellates and Artemia nauplii were fed at five densities from 10 to 5 × 103 cells mL?1, 0 to 4 × 103 cells mL?1, and 0.1, 0.5, 1.0, 1.5 and 2 nauplii mL?1, respectively. In three experiments, two of three types of food were maintained constant at concentrations of 30-40 × 103 cells mL?1 (diatoms), 2 × 103 cells mL?1 (flagellates) and 1 Artemia nauplii mL?1. The oxygen consumption in three experiments increased with larval stage, reaching maximum values in Mill except at lower feed concentrations. A maximum ingestion peak in MI was recorded in larvae fed diatoms, whereas that peak was observed in Mil in larvae fed flagellates. The maximum ingestion rate of Artemia nauplii was observed in Mill. Feed concentrations that produced an optimum metabolic rate as a consequence of equilibrium between ingested food and larval stages were obtained with 20 and 30 × 103 cells mL?1 of C. ceratosporum, 2 and 3 × 103 cells mL?1 of T. chuii, and 1.0 Artemia nauplii mL?1. These concentrations would be the most suitable for producing P. setiferus postlarvae.  相似文献   

7.
Problems of limited number of dry feeds as supplement or replacement of live feeds have led to poor larval nutrition in many species of fish. Therefore, the suitability of co‐feeding 8‐day‐old African catfish (Clarias gariepinus) posthatch larvae using live feed (Artemia salina) and formulated dry diet containing freshwater atyid shrimp (Caridina nilotica) during weaning was investigated. The experiment ended after 21 days of culture and respective groups compared on the basis of growth performance, survival, feed utilization and nutrient utilization. Larvae co‐fed using 50%Artemia and 50% formulated dry diet resulted in significantly (P < 0.05) better growth performance, food gain ratio (FGR), protein efficiency ratio (PER) and productive protein values (PPV) than other treatments. The lowest growth performance occurred in larvae weaned using 100% formulated and commercial dry diets. Better survival of over 90% was obtained in larvae weaned using 50%Artemia and 50% dry diet, while abrupt weaning using 100% dry diets resulted in lower survival (<75%). These results support a recommendation of co‐feeding C. gariepinus larvae using a formulated dry diet containing C. nilotica and 50% live feed when weaning is performed after 8 days posthatching period.  相似文献   

8.
The aim of this work was to evaluate the spermatic parameters of jundia, Rhamdia quelen, semen stored for short periods under different temperatures. Fifteen males were used in a time factorial experimental design (13 × 3 × 3 × 3). The sperm was stored at: 15; 25 and 35°C and activated in water at: 15; 25 and 35°C each, respectively, within storage periods of: 0; 2; 4; 6; 8; 10; 12; 16; 20; 24; 32; 40 and 48 h after collection. The treatments were performed in triplicates and in sequential protocols every 50 h. The motility parameters were evaluated using Pearson's correlation analysis and the significant parameters (< 0.05) were summarized using principal component analysis forming two predicted groups. Group 01 composed the following parameters: curvilinear velocity, wobble and linearity; group 02 comprised average path velocity, straight line velocity, beating cross frequency and motility rate. Effects (< 0.05) of treatments were observed only in group 02, with interaction between time and temperature of exposure and between exposure time and water temperature. Superior results of spermatic parameters of group 02 were observed right after collection. However, the exposure and spermatic activation at 15°C assured significant results 48 h after collection when compared with 25 and 35°C.  相似文献   

9.
The jundiá (Rhamdia quelen) is a siluriform with great potential for aquaculture in South America. Fish oil is a raw material in diets for fish. However, the fisheries that provide fish oil have reached their limit of sustainability. Thus, the use of alternative sources for this ingredient is primordial. The aim of this study was to evaluate the performance and body composition of the jundiá fed with different sources of the vegetable oils. Jundiá (1.0±0.2 g) were fed for 31 days with five isonitrogenous (37%) and isoenergetic (19 kJ g?1) diets, in which the following oils were added: 50 g kg?1 corn oil (CO), 50 g kg?1 fish oil (FO), 50 g kg?1 linseed oil (LO), 33.4 g kg?1 fish oil and 16.7 g kg?1 linseed oil (1/3LO), 16.7 g kg?1 fish oil and 33.4 g kg?1 linseed oil (2/3LO). The performance did not show differences between treatments. The final fatty acid profile and n‐3/n‐6 ratio of the fish were highly influenced by the diet. Fish‐fed diets with linseed and/or fish oil showed superior n‐3/n‐6 ratios to the minimal recommended by the World Health Organization; whereas fish fed diets with corn oil showed an inferior value. Albeit in the present study the commercial size of fish was not attained, these results show a clear tendency. The desaturation/elongation capacity was evidenced, in this species, for the first time. Linseed oil can be utilized as a substitute for fish oil in diets of jundiá without affecting their performance and for producing good‐quality fish. However, more studies are necessary to confirm these results for commercial size.  相似文献   

10.
11.
Three experiments were conducted to evaluate the effects of micro‐bound diets (MBD) on southern flounder larvae. In experiment 1, four MBDs were formulated with different protein sources as follows: MBD 1: herring meal, MBD 2: menhaden meal, MBD 3: menhaden and squid meal; MBD 4: menhaden, squid and herring meal. In experiment 2, four MBDs were formulated as follows: MBD 5: menhaden, squid and herring meal; MBD 6: menhaden, squid, herring and attractants; MBD 7: menhaden, squid, herring and casein, and MBD 8: menhaden, squid, herring, casein and attractants. In experiment 3, three groups were maintained as follows: Group 1: live feed; Group 2: co‐fed with MBD 6; and Group 3: MBD 6. In experiment 1 on 35 dph, survival and body weight (BW) of the fish fed MBD 4 was significantly higher than the MBDs 1 and 2. In experiment 2 on 34 dph, fish fed MBD 6 had significantly higher BW than the commercial microdiets. In experiment 3 on 21 dph, fish receiving only MBD had significantly lower survival than the other groups. Growth, survival and larval fatty acid composition suggested that co‐feeding MBD 6, a mixture of marine protein sources plus attractants was more effective than the other MBDs.  相似文献   

12.
The effects of two weaning diets and different weaning protocols on growth, survival, skeletal deformity and gut morphology of Atlantic cod larvae were studied in four groups from 16 to 45 days posthatch (dph). Cod larvae in groups 1 (early weaning with control diet) and 2 (early weaning with experimental diet) were used to evaluate the effects of different polar lipid content of weaning diets on larval and juvenile performance. Cod larvae in groups 2, 3 (early weaning with experimental diet + cofeeding with Artemia) and 4 (earlier weaning with experimental diet and earlier cofeeding with Artemia) were used to evaluate the effects of early introduction of dry diet and Artemia. From 45 to 170 dph, cod juveniles from all four groups were reared using a standard feeding protocol. No significant differences in growth, survival, deformities and gut morphology were found between cod larvae and juveniles from groups 1 and 2. Cod larvae fed on cofeeding regime with Artemia nauplii (groups 3 and 4) were bigger and had lower frequencies of jaw and neck deformities and higher foregut microvillus circumference than cod larvae from group 2. Our results demonstrate the importance of proper weaning protocols in producing better quality cod juveniles.  相似文献   

13.
Daily food intakes, optimal feeding regimes and food concentrations for laboratory reared Paralithodes camtschaticus (Tilesius, 1815) larvae were investigated. Artemia nauplii hatched at standard conditions were used as food. Daily food intakes of zoeae I–IV at 7–8 °C comprised 11.3, 22.4, 33.2, and 41.8 nauplii individuals (ind)?1 day?1, respectively, taking into account that wet weight of Artemia nauplii used for the experiments constituted 0.026 mg, dry weight 0.0042 mg. Optimal initial Artemia nauplii concentrations for feeding zoeae I–IV was determined as 400–600, 600–800, 800–1000 and 1000–1200 nauplii L?1 respectively. Recommendations on using Artemia nauplii as food for red king crab larvae were outlined on the basis of experimental results. Growth, development and survival rates of zoeae I–IV reared in recycling water system at 7–8 °C and fed Artemia nauplii according to these recommendations were described.  相似文献   

14.
Brine shrimp Artemia, the most common live food organism used in larviculture, can reproduce either oviparously (production of dormant cysts) or ovoviviparously (direct production of nauplii), depending on environmental conditions. Ovoviviparous Artemia nauplii have seldom been considered as a source of live food in aquaculture, partly due to the convenience and the developed techniques associated with the production and use of the dormant cysts. In many countries in Africa, however, hatchery managers do not have access to a reliable supply of affordable good quality cysts. In this study, we therefore demonstrated the potential of a system designed for the continuous ovoviviparous production of nauplii at low salinity, using Great Salt Lake Artemia franciscana and micronized agricultural material as feed. The suitability of the produced nauplii was tested by feeding them directly to Clarias gariepinus larvae in comparison with oviparous nauplii and decapsulated cysts. Higher survival (100%), better protein efficiency ratio (2.6 ± 0.1) and food conversion ratio (1.0 ± 0.1) was observed in larvae fed with the ovoviviparous nauplii (p < 0.05). Overall, we conclude that the ovoviviparous nauplii could serve as an alternative live food for larval fish. If optimized, the system could be validated for integration in hatcheries.  相似文献   

15.
Atlantic halibut larvae were fed docosohexanoic acid- (DHA) selco enriched Artemia (RH-cysts) or wild zooplankton in duplicate tanks from first-feeding and 60 days onward. The zooplankton were collected from a fertilized sea water pond and consisted mainly of different stages of Eurytemora affinis and Centropages hamatus . There were no differences in survival, or in growth during the first 45 days of feeding, between larvae fed the two prey items, but the larvae fed Artemia showed much higher incidence of malpigmentation and impaired eye migration than larvae fed zooplankton. The prey organisms contained similar amounts of dry matter and protein, but Artemia was higher in lipid and glycogen than the zooplankton. Larvae fed Artemia were higher in both glycogen and lipid than the zooplankton-fed larvae towards the end of the feeding period. There were large differences between the prey organisms in the concentrations of essential fatty acids (% of total fatty acids) which was reflected in the fatty acid composition of the larval body. It is concluded that the macronutrient composition of Artemia in the present study was probably within the optimal range for promotion of growth and survival in young Atlantic halibut. The concentration of n-3 HUFA, and especially DHA, is however, very much lower in enriched Artemia than in copepods, and may be one of the factors triggering developmental errors in Atlantic halibut.  相似文献   

16.
用3种营养强化剂强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,研究牙鲆仔鱼的生长、成活、体脂肪酸的组成。结果表明:用强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,成活率、增重均显著高于对照组(p<0 01),其中V号强化剂的效果最好,成活率为29 34%,比对照组提高100%;增重倍数为217 90,比对照组提高68 61%;这是由于V号强化剂强化的卤虫无节幼体体内含有较多的AA的缘故,饵料中AA含量的提高,可以提高牙鲆仔鱼的成活率、促进其生长。牙鲆摄食强化过的轮虫、卤虫无节幼体后,其EPA、DHA、n-3HUFA、PUFA的含量随着饵料中含量的升高而升高,这也是牙鲆仔鱼生长速度和成活率提高的重要因素之一。  相似文献   

17.
The effects of enriched Artemia nauplii on larvae production and survival and growth of the mysid Mysidopsis almyra Bowman 1964 are compared. There were no significant differences (P > 0.05) in production between mysids fed the Artemia nauplii (133 ± 69 mysids day−1) and mysids fed the enriched nauplii (139 ± 82 mysids day−1). No differences in size of newly hatched mysids or mysid growth to 15 days (P > 0.05) were found between the two diets. Survival was significantly higher (P < 0.05) for mysids fed the enriched nauplii (59.1%) compared with mysids fed Artemia nauplii (41.4%).  相似文献   

18.
Newly hatched phyllosoma larvae of Jasus edwardsii were on‐grown to stage V. Using triacylglycerol‐rich marine oil nutrient sources and microalgae, Artemia were enriched with the major polyunsaturated fatty acids (PUFA) to ratios similar to that of wild‐caught phyllosomata. Artemia enriched by different methods were fed to cultured phyllosomata. At each stage animals were counted, measured and sampled for lipid analyses. Survival was highest from stages II to III (62–86%), with mean total survival at 3–12%. From stages I to V larvae increased in mass (0.2–2.2 mg) and total length (2.1–5.8 mm), and decreased in total lipid. The major lipid class in all phyllosomata was polar lipid, followed by sterol, with no triacylglycerol detected. The main fatty acids were 18:1(n‐9)c, 18:2(n‐6), 16:0, 18:0, eicosapentaenoic acid [EPA; 20:5(n‐3)], 18:1(n‐7)c, arachidonic acid [AA; 20:4(n‐6)] and docosahexaenoic acid [DHA; 22:6(n‐3)]. On‐grown phyllosomata had levels of AA and EPA similar to that of wild phyllosomata, but contained markedly lower levels of DHA. Strategies for enhancement of DHA levels will be needed for culture of rock lobster phyllosomata.  相似文献   

19.
Major challenges in culture of Atlantic halibut larvae have been slow growth during the late larval stages and inferior juvenile quality due to pigmentation errors and incomplete eye migration during metamorphosis. The hypothesis of this study was that feeding on‐grown Artemia would alleviate these problems. Artemia were grown for 3–4 days on Origreen or Origo. The growth and nutrient composition of Artemia nauplii and on‐grown Artemia were analysed, and both Artemia types were fed to Atlantic halibut larvae, on‐grown Artemia from 15 days post‐first feeding (dpff). The body length of Artemia increased with 20%–70% in response to on‐growing. In all experiments, protein, free amino acids and the ratio of phospholipid to total lipid increased, while lipid and glycogen decreased. The fatty acid composition improved in some cases and not in others. The micronutrient profiles were not negatively affected in on‐grown Artemia. All these changes are thought to be beneficial for marine fish larvae. The final weight of Atlantic halibut postlarvae was similar, and 90% of the juveniles had complete eye migration in both groups. It is concluded that the present version of Artemia nauplii probably covers the nutrient requirements of Atlantic halibut larvae.  相似文献   

20.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号