首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The pharmacokinetic properties of ceftazidime, a third generation cephalosporin, were investigated in five cats after single intravenous (IV) and intramuscular (IM) administration at a dose rate of 30 mg/kg. Minimum inhibitory concentrations (MICs) of ceftazidime for some Gram-negative (Escherichia coli, n=11) and Gram-positive (Staphylococcus spp., n=10) strains isolated from clinical cases were determined. An efficacy predictor, measured as the time over which the active drug exceeds the bacteria minimum inhibitory concentration (T>MIC), was calculated. Serum ceftazidime disposition was best fitted by a bi-compartmental and a mono-compartmental open model with first-order elimination after IV and IM dosing, respectively. After IV administration, distribution was rapid (t(1/2(d)) 0.04+/-0.03 h), with an area under the ceftazidime serum concentration:time curve (AUC((0-infinity))) of 173.14+/-48.69 microg h/mL and a volume of distribution (V((d(ss)))) of 0.18+/-0.04 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.19+/-0.08 L/hkg and a t(1/2) of 0.77+/-0.06 h. Peak serum concentration (C(max)), T(max), AUC((0-infinity)) and bioavailability for the IM administration were 89.42+/-12.15 microg/mL, 0.48+/-0.49 h, 192.68+/-65.28 microg h/mL and 82.47+/-14.37%, respectively. Ceftazidime MIC for E. coli ranged from 0.0625 to 32 microg/mL and for Staphylococcus spp. from 1 to 64 microg/mL. T>MIC was in the range 35-52% (IV) and 48-72% (IM) of the recommended dosing interval (8-12h) for bacteria with a MIC(90)4 microg/mL.  相似文献   

4.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

5.
The disposition of florfenicol after single intravenous and intramuscular doses of 20 mg of florfenicol/kg of body weight (b.w.) to feeder calves was investigated. Serum florfenicol concentrations were determined by a sensitive high performance liquid chromatographic method with a limit of quantitation of 0.025 μg/ml. The extent of serum protein binding of florfenicol was only 13.2% at a serum florfenicol concentration of 3.0 μg/ml. Serum concentration-time data after intravenous administration were best described by a triexponential equation. Total body clearance and steady state volume of distribution were 3.75 ml/min/kg b.w. and 761 ml/kg b.w., respectively. The terminal half-life after intravenous administration was 159 min. The absolute systemic availability after intramuscular administration was 78.5% (range: 59.3–106%) and the harmonic mean of the terminal half-life was 1098 minutes, indicating slow release of the florfenicol from the formulation at the intramuscular injection site.  相似文献   

6.
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.  相似文献   

7.
Clindamycin phosphate was administered to dogs at dosage of 11 mg/kg of body weight via IV and IM routes. The disposition curve for IV administration was best represented as a 2-compartment open model. Mean elimination half life was 194.6 +/- 24.5 minutes for IV administration and 234.8 +/- 27.3 minutes for IM administration. Bioavailability after IM administration was 87%. Dosage of 11 mg/kg, IV, given every 8 hours, provided serum concentration of clindamycin that exceeded the minimal inhibitory concentration for all Staphylococcus spp, as well as most pathogenic anaerobes, throughout the dosing interval. Intramuscular administration induced signs of pain and cannot be recommended.  相似文献   

8.
The pharmacokinetic properties of ceftriaxone, a third-generation cephalosporin, were investigated in five cats after single intravenous, intramuscular and subcutaneous administration at a dosage of 25 mg/kg. Ceftriaxone MICs for some gram-negative and positive strains isolated from clinical cases were determined. Efficacy predictor (t > MIC) was calculated. Serum ceftriaxone disposition was best fitted by a bicompartmental and a monocompartmental open models with first-order elimination after intravenous and intramuscular and subcutaneous dosing, respectively. After intravenous administration, distribution was fast (t1/2d 0.14 +/- 0.02 h) and moderate as reflected by the volume of distribution (V(d(ss))) of 0.57 +/- 0.22 L/kg. Furthermore, elimination was rapid with a plasma clearance of 0.37 +/- 0.13 L/h.kg and a t1/2 of 1.73 +/- 0.23 h. Peak serum concentration (Cmax), tmax and bioavailability for the intramuscular administration were 54.40 +/- 12.92 microg/mL, 0.33 +/- 0.07 h and 85.72 +/- 14.74%, respectively; and for the subcutaneous route the same parameters were 42.35 +/- 17.62 microg/mL, 1.27 +/- 0.95 h and 118.28 +/- 39.17%. Ceftriaxone MIC for gram-negative bacteria ranged from 0.0039 to >8 microg/mL and for gram-positive bacteria from 0.5 to 4 microg/mL. t > MIC was in the range 83.31-91.66% (10-12 h) of the recommended dosing interval (12 h) for Escherichia coli (MIC90 = 0.2 microg/mL).  相似文献   

9.
Twenty-four sheep (38.0–54.1 kg body wt) were allocated into four treatment groups and dosed with ceftiofur sodium at 1.1 mg ceftiofur free acid equivalents (CFAE)/kg or 2.2 CFAE/kg using a complete two-route (intravenous, i.v.; intramuscular, i.m.), two-period crossover design, with a two-week washout between injections. After another two-week washout period, 12 sheep were selected and dosed with ceftiofur sodium i.m. for five consecutive days at either 1.1 or 2.2 mg CFAE/kg. After all injections, blood samples were obtained serially for determination of serum concentrations of ceftiofur and metabolites. The terminal phase half-lives derived from the last 3–5 concentration-time points were 350 and 292 min (harmonic means) after i.v. doses of 1.1 and 2.2 mg/kg, respectively, and 389 and 459 min after i.m. doses of 1.1 and 2.2 mg/kg, respectively. The i.m. bioavailability of ceftiofur sodium in sheep was 100%, and the area under the curve from time 0 to the limit of quantitation ( AUC 0–LOQ) was dose-proportional from 1.1–2.2 mg CFAE/kg body wt in sheep. After 5 daily i.m. doses of ceftiofur sodium at either 1.1 or 2.2 mg CFAE/kg there was minimal accumulation of drug in serum as assessed by the observed maximum serum concentration ( C max), and serum concentrations were dose-proportional after the multiple dosing regimen.  相似文献   

10.
The purpose of this study was to determine the pharmacokinetics of baicalin after intravenous and intramuscular administration of sodium baicalin at 50 mg/kg to piglets. Plasma baicalin levels were determined by high‐performance liquid chromatography. The plasma concentration–time data of baicalin for both administration routes were best described by two‐compartmental open model. The area under the plasma concentration–time curve and the elimination half‐lives were 77.47 ± 6.14 µg/ml × h and 1.73 ± 0.16 hr for intravenous and 64.85 ± 5.67 µg/ml × h and 2.42 ± 0.15 hr for intramuscular administration, respectively. The apparent volume of distribution and body clearance were 1.63 ± 0.23 L/kg and 2.74 ± 0.30 L h?1 kg?1 for intravenous and 0.51 ± 0.10 L/kg and 0.78 ± 0.08 L h?1 kg?1 for intramuscular routes, respectively. An intramuscular injection of sodium baicalin in piglets resulted in rapid and complete absorption, with a mean maximal plasma concentration of 77.28 ± 7.40 µg/ml at 0.17 hr and a high absolute bioavailability of 83.73 ± 5.53%.  相似文献   

11.
A cross-over study was performed in six adult spayed cats to determine the pharmacokinetics of clomipramine and its metabolite, desmethylclomipramine (DCMP) after intravenous (0.25 mg/kg) and oral (0.5 mg/kg) single-dose administrations. Plasma clomipramine and DCMP were measured by high-performance liquid chromatography at regular intervals for up to 30 h. Intravenous clomipramine best fit a two-compartmental model yielding an elimination rate constant of 0.037-0.09 h(-1) from which a mean half-life of 12.3 h was calculated. Mean clomipramine AUC(0--infinity) (ngxh/mL), clearance (L/hxkg), V(ss) (L/kg) and MRT (h) values were 652.5, 0.393, 5.0, and 13.5, respectively. Compartmental modeling for clomipramine, after oral administration, and DCMP after both administrations, produced wide parameter estimates and plots of residuals indicated poor goodness of fit. Noncompartmental analysis yielded mean AUC(0--30 h) (ngxh/mL), C(max) (ng/mL) and T(max) (h) of 948.3, 87.5 and 6.2 for clomipramine, and 613.8, 34.8, and 12.8 for DCMP respectively after oral administration. Clomipramine bioavailability was 90%. The present study showed marked pharmacokinetic variability for clomipramine and DCMP through biphasic absorption and potential genetic variability in clomipramine metabolism. It was concluded that population pharmacokinetics would allow better characterization of clomipramine variability that may explain the variability in clinical response noted in cats.  相似文献   

12.
Lincomycin 10 mg kg?1, IV in buffalo calves followed two-compartment open model with high distribution rate constant α (11.2?±?0.42 h?1) and K 12/K 21 ratio (4.40?±?0.10). Distribution half-life was 0.06?±?0.01 h and AUC was 41.6?±?1.73 μg mL?1 h. Large Vdarea (1.15?±?0.03 L kg?1) indicated good distribution of lincomycin in various body fluids and tissues. Peak plasma level of lincomycin (71.8?±?1.83 μg mL?1) was observed at 1 min as expected by IV route. The elimination half-life and MRT of lincomycin were short (3.30?±?0.08 and 4.32?±?0.11 h, respectively). Lincomycin 10 mg kg?1 IV at 12-h interval would be sufficient to maintain T?>?MIC above 60 % for bacteria with minimum inhibitory concentrations (MIC) values ≤1.6 μg mL?1. Favourable pharmacokinetic profile in buffalo calves and a convenient dosing interval suggest that lincomycin may be an appropriate antibacterial in buffalo species for gram-positive and anaerobic bacterial pathogens susceptible to lincomycin.  相似文献   

13.
Twelve (12) lactating dairy goats (46–71 kg body wt at study initiation) were divided into four treatment groups and dosed with ceftiofur sodium at 1.1 mg ceftiofur free acid equivalents (CFAE)/kg or 2.2 CFAE/kg using a complete two route (intravenous, i.v.; intramuscular, i.m.), two-period crossover design, with a 2-week washout between injections. After another 2-week washout period, the goats were dosed with ceftiofur sodium i.m. for 5 consecutive days at either 1.1 or 2.2 mg CFAE/kg. The goats from the 2.2 mg/kg multiple dose group were dried off and the i.v. kinetic study repeated. After all injections, blood samples were obtained serially for determination of combined serum concentrations of ceftiofur and metabolites. After intravenous doses of 1.1 and 2.2 mg/kg, the harmonic means of the terminal phase half-lives were 171.8 and 233 min, respectively, for lactating does. The harmonic mean of the terminal phase half-life after an i.v. dose of 2.2 mg/kg in non-lactating does was 254 min. The AUC 0–∞ was significantly less and the clearance significantly greater during lactation. After i.m. doses of 1.1 and 2.2 mg/kg, the harmonic mean terminal phase half-lives were 163 and 156 min, respectively. The i.m. bioavailability of ceftiofur sodium in goats was 100%, and the AUC 0–∞ was dose-proportional from 1.1–2.2 mg CFAE/kg body weight. After five daily i.m. doses of ceftiofur sodium at either 1.1 or 2.2 mg CFAE, there was minimal accumulation of drug in serum as assessed by C max, and serum concentrations were dose-proportional after the multiple dosing regimen.  相似文献   

14.
The pharmacokinetics of flunixin were studied in 6 adult lactating cattle after administration of single IV and IM doses at 1.1 mg/kg of body weight. A crossover design was used, with route of first administration in each cow determined randomly. Plasma and milk concentrations of total flunixin were determined by use of high-pressure liquid chromatography, using an assay with a lower limit of detection of 50 ng of flunixin/ml. The pharmacokinetics of flunixin were best described by a 2-compartment, open model. After IV administration, mean plasma flunixin concentrations rapidly decreased from initial concentrations of greater than 10 micrograms/ml to nondetectable concentrations at 12 hours after administration. The distribution phase was short (t1/2 alpha, harmonic mean = 0.16 hours) and the elimination phase was more prolonged (t1/2 beta, harmonic mean = 3.14 hours). Mean +/- SD clearance after IV administration was 2.51 +/- 0.96 ml/kg/min. After IM administration, the harmonic mean for the elimination phase (t1/2 beta) was prolonged at 5.20 hours. Bioavailability after IM dosing gave a mean +/- SD (n = 5) of 76.0 +/- 28.0%. Adult, lactating cows (n = 6) were challenge inoculated with endotoxin as a model of acute coliform mastitis. After multiple administration (total of 7 doses; first IV, remainder IM) of 1.1 mg/kg doses of flunixin at 8-hour intervals, plasma flunixin concentrations were approximately 1 microgram/ml at 2 hours after each dosing and 0.5 micrograms/ml just prior to each dosing. Flunixin was not detected in milk at any sampling during the study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
OBJECTIVES: The aim of this work was to examine the pharmacokinetics of diclofenac (DCLF) in sheep after intravenous (IV) and intramuscular (IM) dosing. ANIMALS: Healthy male Najdi sheep. MATERIALS AND METHODS: Diclofenac (1 mg kg(-1)) was administered to ten clinically healthy-male Najdi sheep IV or IM (n = 5 each). Blood samples (5 mL) were collected and serum was separated for drug analysis by high-performance liquid chromatography with UV detection. Diclofenac pharmacokinetic parameters were determined by noncompartmental analysis. RESULTS: Diclofenac is quickly eliminated from sheep with a terminal T(1/2lambda) of 2-3 hours for both routes of administration. Total DCLF clearance after IV and IM administration was 87.86 +/- 24.10 and 85.69 +/- 40.76 mL kg(-1) hour(-1) respectively. The absolute bioavailability of IM DCLF appears to be approximately 100%. CONCLUSIONS AND CLINICAL RELEVANCE: The drug should be administered two to three times daily in sheep by IM or IV injection to maintain therapeutic concentrations. Additional studies are needed to evaluate the route of elimination of DCLF in sheep including metabolites formation and the significance of enterohepatic circulation.  相似文献   

17.
Concentrations of the potent diuretic bumetanide were determined by a sensitive high performance liquid chromatographic procedure in plasma and urine from horses following intravenous and intramuscular administration of a dose rate of 15 micrograms/kg. The elimination half-life was found to be 6.3 min, the volume of distribution at steady state 68 ml/kg and the total plasma clearance 10.9 ml/min/kg. The onset of diuresis occurred within 15 min and diuresis was no longer apparent 1 h after i.v. administration. Given by the intramuscular (i.m.) route, bumetanide was rapidly absorbed; bioavailability was 70-80%. i.m. administration of bumetanide prolonged its plasma half-life (11-27 min) and enhanced and prolonged its diuretic effect.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of danofloxacin in goats and the concentrations required to induce bacteriostasis, bactericidal activity, and bacterial elimination. ANIMALS: 6 healthy British Saanen goats. PROCEDURE: Danofloxacin (1.25 mg/kg of body weight) was administered i.v. and i.m. in a cross-over design with 14 days between treatments. A tissue cage was used for evaluation of drug distribution into transudate and exudate. The ex vivo antibacterial activity of danofloxacin in serum, exudate, and transudate against a caprine isolate of Mannheimia haemolytica was determined. Pharmacokinetic and pharmacodynamic data were integrated to determine the ratio of the area under the concentration versus time curve to the minimum inhibitory concentration of danofloxacin (AUIC). RESULTS: Elimination half-lives of danofloxacin in serum were 4.67 and 4.41 hours after i.v. and i.m. administration, respectively. Volume of distribution was high after administration via either route, and bioavailability was 100% after i.m. administration. Rate of penetration into exudate and transudate was slow, but elimination half-lives from both fluids were approximately twice that from serum. Drug concentrations in serum, exudate, and transudate for 9 to 12 hours after administration induced marked ex vivo antibacterial activity. For serum, AUIC24h values required for bacteriostasis, bactericidal effect, and bacterial elimination were 22.6, 29.6, and 52.4, respectively. Similar values were obtained for exudate and transudate. CONCLUSIONS AND CLINICAL RELEVANCE: Integration of danofloxacin pharmacokinetic and pharmacodynamic data obtained in goats may provide a new approach on which to base recommendations for therapeutic dosages.  相似文献   

19.
The pharmacokinetic behaviour and bioavailability of enrofloxacin (ENR) were determined after single intravenous (iv) and intramuscular (im) administrations of 5mg/kg bw to six healthy adult Angora rabbits. Plasma ENR concentrations were measured by high performance liquid chromatography. The pharmacokinetic data were best described by a two-compartment open model. ENR pharmacokinetic parameters were similar (p>0.05) for iv and im administrations in terms of AUC0-infinity, t1/2beta and MRT. ENR was rapidly (t1/2a, 0.05 h) and almost completely (F, 87%) absorbed after im injection. In conclusion, the pharmacokinetic properties of ENR following iv and im administration in Angora rabbits are similar to other rabbit breeds, and once or twice daily iv and im administrations of ENR at the dose of 5mg/kg bw, depending upon the causative pathogen and/or severity of disorders, may be useful in treatment of infectious diseases caused by sensitive pathogens in Angora rabbits.  相似文献   

20.
The pharmacokinetics of amikacin sulfate (AK) were studied in the horse after intravenous (i.v.) and intramuscular (i.m.) administration. Serum (Cs), synovial (Csf) and peritoneal (Cpf) fluid concentrations of the drug were measured. Doses of 4.4, 6.6 and 11.0 mg/kg were given. The concentrations at 15 min following i.v. injection were 30.3 +/- 0.3, 61.2 +/- 6.9 and 122.8 +/- 7.4 micrograms/ml, respectively, for the 4.4, 6.6 and 11.0 mg/kg doses. Mean peak Cs values after the intramuscular injections occurred at 1.0 h post-injection and were 13.3 +/- 1.6, 23.0 +/- 0.6 and 29.8 +/- 3.2 micrograms/ml, respectively. The t 1/2 of amikacin was 1.44, 1.57 and 1.14 h for the 4.4, 6.6 and 11.0 mg/kg doses, respectively. In this study, minimum inhibitory concentrations (MIC) of amikacin sulfate were determined for six pathogens. Based on the MIC and the pharmacokinetic parameters, it would appear that the usual therapeutic dose of amikacin would be between 4.4 and 6.6 mg/kg twice daily and, for the more serious life-threatening infections, dosing three times a day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号