首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants were regenerated from protoplasts isolated from embryonic suspension cultures of N5047S, a photoperiod sensitive genic male sterile (PGMS) Japonica rice line. Flow cytometric analyses of nuclear DNA content identified some tetraploid regenerates whose agronomic traits could be distinguished from diploid regenerates. Pollen and female fertility of diploid protoplast-derived clones grown under different light and temperature conditions was compared. A promising PGMS protoplast clone, ZAU11S, was developed from these clones. Its male sterility was confirmed as a photoperiod × temperature interaction type. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
D. F. Hong    J. Liu    G. S. Yang    Q. B. He 《Plant Breeding》2008,127(1):69-73
Rs1046AB is a dominant genic male sterility (DGMS) line in rapeseed, in which the sterility has always been thought to be conditioned by the interaction of a male sterility gene ( Ms ) and its non-allelic restorer gene ( Rf ). This system provides not only a tool for assisting in recurrent selection but also a promising system for hybrid production. Based on previous studies, two amplified fragment length polymorphism markers linked with the Ms gene were converted into a dominant and a co-dominant sequence characterized amplified region (SCAR) marker, respectively. The putative linear order relationship of three dominant SCAR markers with the same genetic distance from the Rf gene, was also determined by an examination of whether the homologues of these markers are present or not in different lines carrying Rf . A bigger fragment generated by the closest marker linked to the Rf gene was observed in all lines carrying the recessive allele rf , suggesting that this marker is a co-dominant marker, which was further confirmed by nucleotide sequence comparison of these fragments. SCAR markers specific for Ms and Rf will be especially valuable in marker-assisted DGMS three-line breeding.  相似文献   

3.
Yang Zhuping 《Euphytica》1997,94(1):93-99
The fertility segregations of F1, F2, BCF1 descended from crosses between PSGMR and japonica varieties, and F1's anther cultured homozygous diploid pollen plant populations (H2) were studied to reveal the genetic mechanism of photoperiod sensitive genic male sterility in PSGMR under natural daylight length at Shanghai. Rate of bagged seed-setting was used as an indicator of fertility. Fifteen F1 showed complete fertility similar to their parents. The ratio of completely sterile plants to fertile plants in fifteen F2 and four BCF1 was 1:15 and 1:3, respectively. The ratio of completely sterile to fertile diploid pollen plants in nine diploid populations (H2) was 1:3. These results demonstrated that the photoperiod sensitive genic male sterility in PSGMR was governed by two pairs of independent major recessive genes. There were no significant fertility segregations in hybrids F1 and selfed F2 between Nongken 58S and its derivatives 7001S, 5088S, 5047S and M105-9S, indicating that the photoperiod sensitive genic male-sterile genes in Nongken 58S were allelic to those in its derivatives. Several photoperiod sensitive genic male-sterile diploid pollen lines were bred from anther cultured homozygous diploid populations (H2) in about a three-year period. Most of these diploid lines showed significant fertility transformation and stable complete sterility from 5 August to 5 September, excellent agronomic traits and high resistance to blast and bacterial leaf blight. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Two‐line hybrid rice as a novel hybrid breeding method has huge potential for yield increasing and utilization of intersubspecific heterosis, and it is of major significance for the food security of rice‐consuming populations. Zhu1S is a thermosensitive genic male‐sterile line of rice with low critical temperature and excellent combining ability, which has been widely exploited as a female parent in Chinese two‐line hybrid rice breeding. Here, genetic mapping in F2 populations was used to show that its male sterility is inherited as a single recessive gene and that responsible gene (termed tms9) lies on the short arm of chromosome 2. A high‐resolution linkage analysis which was based on the Zhu1S/R173 F2 population found that the thermosensitive genic male‐sterile gene tms9 of Zhu1S was fine mapped between insertion–deletion (Indel) markers Indel 37 and Indel 57, and the genetic distance from the tms9 to the two markers was 0.12 and 0.31 cM, respectively. The physical distance between the two markers was about 107.2 kb. Sequence annotation databases showed that the two Indel markers (Indel 37 and Indel 57) were located on two BAC clones (B1307A11 and P0027A02). There are sixteen open reading frames (ORF) present in this region. The results of this study are of great significance for further cloning tms9 and molecular marker–assisted selection.  相似文献   

5.
Non‐pungent bell pepper (Capsicum annuum L.) lacks the cytoplasmic male sterility (CMS) nuclear restorer allele, Rf, and CMS cannot be employed in its F1 hybrid seed production. To demonstrate that the genic male sterility (GMS) system in non‐pungent bell pepper can be converted to the CMS male sterility system, the conversion of GMS to CMS for non‐pungent bell pepper line GC3 was conducted by introgression of S‐type cytoplasm and the Rf allele from tropical pungent donors. After morphological traits were evaluated, two lines from BC1F1 containing S‐type cytoplasm and four lines from BC2F2 containing Rf allele, phenotypically similar to GC3, were obtained and could be employed as CMS male sterile lines and restorer lines for non‐pungent bell pepper. Four molecular markers potentially linked to traits of interest were also evaluated in BC1F1 and BC1F2 populations. This is the first time that GMS has been successfully converted to CMS in bell pepper, a significant contribution for bell pepper hybrid seed production.  相似文献   

6.
G. Y. Lu    G. S. Yang  T. D. Fu 《Plant Breeding》2004,123(3):262-265
Rs1046AB is a genic male sterile two‐type line in rapeseed that has great potential for hybrid seed production. The sterility of this line is conditioned by the interaction of two genes, i.e. the dominant genic male sterility gene (Ms) and the suppressor gene (Rf). The present study was undertaken to identify DNA markers for the Ms locus in a BC1 population developed from a cross between a male‐sterile plant in Rs1046AB and the fertile canola‐type cultivar ‘Samourai’. Bulked segregant analysis was performed using the amplified fragment length polymorphism (AFLP) methodology. From the survey of 480 AFLP primer combinations, five AFLP markers (P10M13350, P13M8400, P6M6410, E7M1230 and E3M15100) tightly linked to the target gene were identified. Two of them, E3M15100 and P6M6410, located the closest, at either side of Ms at a distance of 3.7 and 5.9 cM, respectively. The Ms locus was subsequently mapped on linkage group LG10 in the map developed in this laboratory, adding two additional markers weakly linked to it. This suite of markers will be valuable in designing a marker‐assisted genic male sterility three‐line breeding programme.  相似文献   

7.
柱头性状是影响水稻不育系异交繁殖和杂交水稻制种产量的重要性状。为创制长柱头、高外露率的水稻温敏核不育系提供遗传信息,调查了短柱头、低外露率的粳型光温敏核不育系7001S和长柱头、高外露率的温敏核不育系紫泰S及其杂交、自交获得的F1、F2群体(350个株系)和F2:3群体(320个株系)的4个柱头性状,分析了4个性状之间的相关性,并运用主基因+多基因混合遗传模型,对2个世代4个性状进行了遗传分析。结果表明, 4个柱头性状间均表现出极显著正相关,相关系数介于0.262和0.895之间。柱头长度、花柱长度、柱头和花柱总长度(以下简称柱花总长度)均表现出受2对主效基因和微效基因共同控制,除F2群体中柱花总长度的2对主基因表现为等加性效应和等显性效应外,其余均表现为加性-显性-上位性效应, 3个性状均表现出以主基因间的上位性效应为主; F2群体柱头外露率受2对加性-显性-上位性主基因+多基因控制,而F2:3群体则表现为受1对加性-显性主基因+多基因控制,以主基因间的...  相似文献   

8.
Presence of substantial heterosis and economic hybrid seed production are two most desirable components for success of any commercial hybrid breeding programme. Thermosensitive genic male sterile (TGMS) lines of rice, in this regard, have tremendous potential in realizing further quantum jump in yield and economical hybrid seed cost. Analyses for combining ability and heterosis over optimum (120N : 60P2O5 : 40K2O kg/ha) and high (200N : 90P2O5 : 60K2O kg/ha) fertility environments for six traits were made in 2 years (2001 and 2002) using 120 hybrids of inter‐ and intra‐subspecific nature derived from hybridization of 30 elite indica TGMS lines and four cultivars, viz., ‘Pant Dhan 4’ and ‘Ajaya’ (I = indica), ‘Taichung 65’ (J = japonica) and ‘IR 65598‐112‐2’ (TJ = tropical japonica) in line × tester mating design. Predominance of non‐additive genetic variance suggested good prospects of hybrid breeding. Pooled analysis revealed highly significant variances for lines, general combining ability (GCA), specific combining ability (SCA) and line x tester. TGMS line 365‐8S was the best general combiner for all the six traits including grain yield. Trend of relative mid‐parent heterosis for grain yield, panicle length, grain number per panicle and earliness in flowering was I/TJ > I/J > I/I. For panicle number per plant and 1000‐grain weight, trends were I/TJ > I/I > I/J and I/I > I/TJ > I/J, respectively. Grain yield recorded heterosis of 49.3%, 71.9% and 92.7% for I/I, I/J and I/TJ hybrid groups respectively. Effect of environments on the hybrid performance indicated better response of hybrids at high fertilizer dose. Study suggests greater prospects of combining improved japonica and tropical japonica germplasms having wide compatible gene with indica TGMS lines for exploitation of intersubspecific heterosis.  相似文献   

9.
水稻光敏核不育基因pms3的精细定位   总被引:20,自引:0,他引:20  
为了进一步研究水稻晚粳品种农垦58转变为光敏核不育水稻农垦58S的突变位点,并精细定位光敏不育基因pms3,我们利用农垦58S/1514杂交组合的F1进行花药培养构建了一个DH群体,验证了在该群体中光敏不育受pms1、 pms3两对基因的控制,并根据分子标记分析选择第12染色体是1514基因型、 第7染色体农垦58S基因型的DH系DH80与农垦58S杂  相似文献   

10.
Y. H. He    G. G. Ning    Y. L. Sun    Y. C. Qi    M. Z. Bao 《Plant Breeding》2009,128(1):92-96
In marigold, an F2 segregation population of 167 plants was constructed from a cross of a line (M525A) carrying the male sterility trait × an inbred line (f53f). In line M525A, the male sterility trait was controlled by the recessive gene, Tems . The intersimple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) techniques combined with bulked segregant analysis were used to develop markers linked to the trait. From a survey of the 38 ISSR primers and 170 SRAP primer combinations, only one SRAP marker that was closely linked to the target trait was identified and successfully converted into sequence characterized amplified region (SCAR) marker that was located within 2.4 cM from Tems locus. The marker was validated with five other two-type lines and in each case the male fertile plants were reliably identified. This SCAR marker therefore permits the efficient marker-assisted selection of male sterile individuals in breeding programmes of marigold and will greatly facilitate the breeding of F1 cultivars.  相似文献   

11.
Summary The genetic relationships between rice varieties were analysed by using the polymerase chain reaction (PCR), with arbitrary oligonucleotide primers in the random amplified polymorphic DNA (RAPD) method. PCR with 22 arbitrary primers applied to 37 varieties produced 144 useful markers, of which 67% were polymorphic. Thus, with selected primers sufficient polymorphism could be detected to allow identification of individual varieties. Visual examination of electrophoresis gels and analysis of banding patterns confirmed that commercial Australian and USA lines and their relatives were very closely related, with similarity indices of 88–97%. Three varieties originating from more distant geographical centres were easily distinguished, producing variety-specific amplification profiles and expressing a lower similarity index of 80% to all other varieties tested. PCR offers a potentially simple, rapid and reliable method for rice genotype identification and recognition of lines that could contribute genetic diversity to new commercial varieties.Abbreviations PCR Polymerase Chain Reaction - RAPD Random Amplified Polymorphic DNA  相似文献   

12.
We conducted a proteomic comparison between thermo‐sensitive genic male sterility (TGMS) SP2S and its near‐isogenic line SP2F grown at 22°C. The proteomes at microsporocyte meiosis and uninucleate microspore stages were profiled using 2‐dimensional gel electrophoresis. Twenty‐five well‐reproducible spots (10 spots at microsporocyte meiosis stage and 15 spots at uninucleate microspore stage) containing 28 proteins were successfully identified by MALDI‐TOF/TOF mass spectrometry. An elongation factor EF‐2 at microsporocyte stage and 4 proteins (aconitate hydratase, triosephosphate isomerase, serine/arginine‐rich mRNA splicing factor and glutathione S‐transferase) at uninucleate microspore stage accumulated in SP2S, but more proteins were lost or reduced, including those associated with amino acid metabolism, photosynthesis, synthesis and degradation of protein, lipid metabolism, cytoskeleton, RNA modification, oxidoreductase and defence response. The dramatic decrease of tubulin, actin and Translationally controlled tumour protein (TCTP) crucial for microtubule and cell division and three enzymes for amino acid metabolite at early stage indicated a serious defect on the cytokinesis. They were important clues for us to search the TGMS genes and its interacting genes.  相似文献   

13.
Summary Most of the commercial hybrids of indica rice are based on wild abortive (WA) source of cytoplasmic-genetic male sterility (CMS). Such cytoplasmic uniformity may lead to genetic vulnerability to disease and insect pests. To overcome this problem, diversification of CMS sources is essential. Crosses of 46 accessions of O. perennis and two accessions of O. rufipogon as female parents were made with two restorers (IR54, IR64) of WA cytosterility. Sterile hybrids were backcrossed with the respective recurrent parents. Of all the backcross derivatives, one line having the cytoplasm of O. perennis Acc 104823 and the nuclear background of IR64 was found to be stable for male sterility. The newly developed CMS line has been designated as IR66707A. This line is completely sterile (0% seed set) under selfed conditions. Crosses of IR66707A with 10 restorers of WA cytoplasm showed almost complete (93–100%) pollen sterility, indicating that the male sterility source of IR66707A is different from WA sterility. Southern hybridization of IR66707A, O. perennis (cytoplasmic donor), IR66707B (maintainer) and V20A (WA cytoplasm) using mitochondrial DNA specific probes (5 endonucleases × 8 probes) showed identical banding patterns between IR66707A and O. perennis. However, in more than half of the combinations, different banding patterns were observed between IR66707A and IR66707B and between IR66707A and V20A. The results suggest that IR66707A has the same cytoplasm as the donor (O. perennis), and CMS may not be caused by any major rearrangement or modification of mtDNA. The new CMS source identified will be useful in cytoplasmic diversification in hybrid rice breeding.  相似文献   

14.
15.
A genic male-sterility gene newly induced by chemical mutagenesis, tentatively designated as ms-h(t), was located on the molecular map of rice and tested for its effect on chalky endosperm. Bulked segregant analysis was used to determine the chromosomal location of the ms-h(t) locus by screening four to five RFLP markers per chromosome. After confirming that the gene was located on chromosome 9, twenty-four RFLP markers from chromosome 9 were surveyed for polymorphism in the parents of the mapping population. Of these, eleven markers were mapped around the ms- h(t) locus. RG451 and RZ404 flanked the ms-h(t) gene, at 2.5cM and 3.3cM, respectively. Heterozygous F2 to F4 progenies were tested for co- segregation of male-sterility and chalky endosperm and it was revealed that ms-h(t) might have a pleiotropic effect on chalky endosperm. This mutant would be a good biological material to characterize the biochemical mechanism of male sterility and related pleiotropic effects. Further studies should be needed to know the usefulness of this mutant for hybrid seed production. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The Rfo fertility restorer gene for the Ogura cytoplasmic male sterility (CMS) applied for oilseed rape hybrid seed production can be monitored with the use of the RAPD OPC021150 marker while molecular breeding. The aim of this work was to convert the RAPD marker into a more suitable SCAR marker. Total DNA was isolated from a doubled haploid line derived from the line BO20 (INRA, France). A fragment of 1150‐bp linked to the Rfo gene was PCR amplified with the use of the RAPD OPC02 primer, cloned and sequenced. A pair of primers was designed and PCR amplification was performed to develop a SCAR marker for the Rfo gene. The new marker was applied for analysis of 220 oilseed rape lines comprising doubled haploid and inbred restorer lines, restored hybrids as well as F1 and F2 recombinant generations involving restorer lines. Simultaneously, the RAPD OPC02 marker was used and it revealed that the markers are equivalent to each other. However, the developed new SCAR marker has made the analysis more practical, rapid and efficient.  相似文献   

17.
Hybrid varieties developed by making use of the wild abortive cytoplasmic male sterility system account for 90% of hybrid rice produced. Previous inheritance studies have established that the fertility restoration in this system is controlled by two major loci, but the chromosomal locations of the fertility restorer (Rf) loci have yet to be resolved. In this study we determined the genomic locations of the two Rf loci by their linkage to molecular markers. The Rf gene containing regions were identified by surveying two bulks, made of 30 highly fertile and 46 highly sterile plants from a large F2 population of the cross between Zhenshan 97A and Minghui 63, with RFLP markers covering the entire rice genome. The survey identified two likely Rf gene containing regions, located on chromosomes 1 and 10 respectively. This was confirmed by ANOVA using a large random sample from the same F2 population and also with a genome-wide QTL analysis of a test-cross population. The results also showed that both loci have major effects of almost complete dominance on fertility restoration and the effect of the locus on chromosome 10 is larger than the one on chromosome 1. The two loci acted as a pair of classical duplicate genes; a single dominant allele at one of the two loci would suffice to restore the fertility to normal or nearly normal. Closely linked markers identified in this study may be used for marker assisted selection in hybrid rice breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Three thermosensitive genetic male sterility (TGMS) genes – tms2, tgms and tms5 – were pyramided using linked microsatellite markers. Three TGMS donors, Norin PL 12 (tms2), SA2 (tgms) and DQ200047-21 (tms5) were utilized in generating crosses from which two-gene and three-gene pyramids possessing the RM11 allele of Norin PL 12, RM257 allele of SA2 and RM174 allele of DQ200047-21 were selected. All selected progenies were male-sterile at sterility-inducing conditions. In addition, rice SF21 was identified as a candidate tms5 gene because of its complete linkage with RM174. The 4,200-bp region was amplified from the TGMS line M105S and the two ends were sequenced. In silico analysis of partial nucleotide sequences showed that the region is similar to the SF21 pollen-specific gene of Arabidopsis and Helianthus. The M105S tms5 sequence was also compared to the SF21 sequence from the International Rice Genome Sequencing Project (IRGSP) database.  相似文献   

19.
Kenji Fujino 《Euphytica》2004,136(1):63-68
Low temperature-induced retardation of seedling growth is a common problem in temperate rice-growing areas, at high altitudes of tropical and sub-tropical areas, and in areas with a cold irrigation water supply. Studies on low temperature germinability have revealed complex inheritance of the trait. The purpose of this study was to identify the gene(s) for low temperature germinability using Italica Livorno as a donor parent. The frequency distributions for the germination rate at 15 °C in the F2 and BC1F1 populations showed continuous segregation, suggesting that low temperature germinability was under polygenic control. Since some lines in the BC1F1 population showed vigorous low temperature germinability similar to that of Italica Livorno, backcrosses until the BC5F1 generation was carried out using Hayamasari as the recurrent parent. Clear segregations of low temperature germinability were observed in the BC5F1 and BC5F2 populations. The distribution of low temperature germinability fitted a single-gene segregation, indicating that a single dominant gene with a large effect was transferred to Hayamasari. This gene is tentatively symbolized as Ltg(t). Low temperature germinability of near isogenic lines for Ltg(t) was similar to that of Italica Livorno. Ltg(t) should greatly contribute to the improvement and manipulation of low temperature germinability in rice breeding programs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Most of the hybrid seed in chilli are produced manually, but the use of male sterility (MS) can reduce the cost of hybrid seed production. MS‐12, a nuclear male‐sterile (NMS) line developed at Punjab Agricultural University, Ludhiana (India), has been utilized to develop commercial F1 hybrids. A recessive gene, designated as ms10, governs MS in MS‐12. Due to recessive gene control, development of new NMS lines incorporating ms10 gene is tedious and time‐consuming. We identified SSR markers AVRDC‐PP12 and AVRDC_MD997* linked to the ms10 gene. A total of 558 primer pairs were screened following bulked segregant analysis (BSA). Linkage analysis in 210 F2 plants indicated that the two SSR markers were linked to the ms10 gene and the marker AVRDC‐PP12 was closest to the gene at 7.2 cM distance. The marker was mapped to chromosome 1 at genome position 175 694 513 to 175 694 644. Until more closely linked markers are developed, the marker AVRDC‐PP12 would facilitate transfer of ms10 gene through marker‐assisted selection (MAS). Fine mapping would lead to cloning of the ms10 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号