首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Mycobacterium avium subspecies paratuberculosis (MAP) is an intracellular pathogen that survives in the host's intestinal macrophages and causes chronic enteritis in ruminants. The subclinical stage of MAP infection is accompanied by loss of pro-inflammatory T(H)1 response, and a predominant, but ineffective, antibody-mediated T(H)2 response. How MAP interacts with the bovine immune system and suppresses T(H)1 responses is unclear. Studies carried out in our lab and others indicate that when peripheral blood mononuclear cells (PBMCs) from subclinical MAP-infected cattle are stimulated with MAP-antigen, IL-10 is up-regulated and leads to suppression of IFN-gamma expression in MAP-antigen-reactive effector T cells. IL-10 up-regulation and reduction in IFN-gamma would favor MAP survival and proliferation in macrophages. Depletion studies in PBMCs from MAP-infected cattle also revealed that the MAP responsive T-cell population that produces IL-10 is CD4(+) and CD25(+). Therefore, we hypothesize that cattle infected with MAP develop regulatory T (Treg) cells capable of producing IL-10 that in turn limits peripheral and tissue-specific T(H)1 immune responses. The aim of this review is to summarize current thinking regarding Treg cells and provide preliminary evidence that infection of cattle with MAP may lead to development of Treg cells.  相似文献   

2.
It is now well established that antigen-specific CD8+ T cells play a major role in vaccine-induced immunity against intracellular pathogens and tumor cells. The detection of these immune cells in outbred animals has been hampered mainly by the need to generate individual autologous antigen-presenting cells (APCs) due to the high degree of polymorphism of the major histocompatibility complex (MHC) Class I loci. We used individually derived immature porcine dendritic cells infected with a pox-based recombinant viral vector to ex vivo stimulate PBMCs from vaccinated conventional pigs. The frequencies of antigen-specific T cells was determined by the number of IFNγ-secreting cells in a quantitative enzyme-linked immune spot (ELISPOT) assay. Using this approach we were able to rank different pseudorabies virus (PRV) vaccines strategies for their ability to prime viral-specific IFNγ+ T cells. Plasmid DNA has recently emerged as a promising tool with multiple applications in the field of infectious diseases, allergy and cancer. We showed for the first time in this study that DNA immunization induced a long-lived antigen-specific IFNγ+ T cells response in conventional pigs. Additional studies allowed us to show that these virus-specific IFNγ+ responding cells detected in this ELISPOT assay were MHC-restricted and comprised in the CD8bright pig T cell subset. These new data confirm the usefulness of DNA vaccines to control diseases requiring cellular immunity in pigs.  相似文献   

3.
Mycobacterium avium subsp. paratuberculosis (MAP) causes lesions in naturally and experimentally infected ruminants which greatly differ in severity, cellular composition and number of mycobacteria. Morphologically distinct lesions are already found during the clinically inapparent phase of infection. The complex local host response and number of MAP were characterized at the initial sites of lesions, organized gut-associated lymphoid tissue, in experimentally infected goats. Tissues were collected at 3, 6, 9 and 12 month post-inoculation (mpi) from goat kids that had orally received 10 times 10 mg of bacterial wet mass of MAP (JII-1961). The cellular composition of lesions in Peyer's patches in the jejunum and next to the ileocecal valve was evaluated in 21 MAP-inoculated goats, where lesions were compared with unaltered tissue of six control goats. CD68+, CD4+, CD8+, γδ T lymphocytes, B lymphocytes and plasma cells, MHC class II+ and CD25+ cells were demonstrated by immunohistochemistry in serial cryostat sections.At 3 mpi, extensive granulomatous infiltrates predominated, consisting of numerous epitheloid cells admixed with many CD4 and γδ T lymphocytes. Only single MAP were detected. This indicates a strong cellular immune reaction able to control MAP infection. γδ T lymphocytes were markedly increased in this type of lesion which may reflect their important role early in the pathogenesis of paratuberculosis. At 9 and 12 mpi, divergent lesions were observed which may reflect different outcomes of host–pathogen interactions. In five goats, minimal granulomatous lesions were surrounded by extensive lymphoplasmacytic infiltrates and no MAP were detected by immunohistochemistry. This was interpreted as effective host response that was able to eliminate MAP locally. In three goats, decreased numbers of lymphocytes, but extensive granulomatous infiltrates with numerous epitheloid cells containing increased numbers of mycobacteria were seen. This shift of the immune response resulted in uncontrolled mycobacterial multiplication. Focal and multifocal circumscribed granulomatous infiltrates of mainly epitheloid cells may represent sites of new infection, since they were observed in goats at all times after inoculation. Their presence in goats with minimal granulomatous lesions surrounded by extensive lymphoplasmacytic infiltrates may indicate that despite the local clearance, the infection may be perpetuated.The complex cellular immune reactions postulated for the pathogenesis of paratuberculosis were demonstrated at the local sites of infection. These early host–pathogen interactions are most likely essential for the eventual outcome of the MAP infection.  相似文献   

4.
Live attenuated vaccines provide protection against intestinal lesions in goats infected with Mycobacterium avium subsp. paratuberculosis. To examine the role of different T lymphocyte subsets in the development of this protective immunity, CD4(+), CD8(+) and gamma delta T cell receptor (TCR)(+) cells from peripheral blood of goat kids vaccinated with live attenuated strains of M. a. paratuberculosis were studied. After in vitro stimulation with purified protein derivate, the expression of gamma-interferon (IFN-gamma) and the activation marker interleukin-2 receptor (IL-2R) was analysed by flow cytometry. A depletion experiment was performed, where the phenotypes and IL-2R expression was studied after stimulation of cultures depleted of a T lymphocyte subpopulation. Close to all of the IFN-gamma producing cells were of the CD4(+) subset, while only a small number were CD8(+) cells. The gamma delta TCR(+) cells were highly activated, but did not produce IFN-gamma after in vitro stimulation. Depletion of CD4(+) cells lead to a decrease in the percentage of total gamma delta TCR(+) cells and gamma delta TCR(+)IL2-R(+) cells. Removing the gamma delta TCR(+) cells increased the relative numbers of CD4(+), but not the CD4(+)IL-2R(+) cells. Insight into the in vitro recall responses of T cell subsets from animals vaccinated with live paratuberculosis vaccines is essential in the development of more efficient vaccines.  相似文献   

5.
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne's disease or paratuberculosis, a chronic enteritis of ruminants. While Johne's disease is primarily expressed in the gastrointestinal tract, isolation of MAP from extra-intestinal tissues indicates that microbial dissemination via the haematogenous route may occur during the infection. This study examined the movement of peripheral blood mononuclear cells (PBMCs) infected with MAP and the dissemination of MAP following mycobacteraemia induced by IV inoculation over a time frame of 3 days.  相似文献   

6.
Johne's disease (JD) is characterized by a protracted period of subclinical infection. Infected cows may remain in the subclinical state until stressors such as parturition and lactation invoke more clinical signs of disease. The objective of this study was to evaluate changes in the percentages of CD4(+), CD8(+), and gammadelta T-cells, B-cells, monocytes, as well as the expression of the activation marker, CD5, on these cell subpopulations in the peripheral blood of dairy cows naturally infected with Mycobacterium avium subsp. paratuberculosis (MAP) during the periparturient period. Peripheral blood mononuclear cells (PBMCs) were collected from 3 wk pre- to 4 wk post-calving and freshly isolated or cultured for 7d. Day 7 cultures were infected with live MAP at a 10:1 MOI (bacteria to adherent PBMC), and cultures were incubated for an additional 24h. Fluorescent antibody labeling of lymphocyte subsets and monocytes was conducted and analyzed with flow cytometry. Freshly isolated PBMCs from subclinical cows expressed a greater (P<0.05) percentage of CD8(+) and gammadelta T-cells compared with clinical cows. The percentage of CD4(+) T-cells increased (P<0.08) in clinical cows as parturition approached. During the postpartum period, clinical cows had greater (P<0.05) CD4:CD8 ratios compared with subclinical and control cows. After 8d, uninfected PBMCs from clinical cows had greater (P<0.05) percentages of CD14(+) cells compared with subclinical cows. When infected with live MAP, there was no effect of infection group or parturition on cell subpopulations. In fresh PBMCs, clinical cows expressed lower percentages of CD4(+)CD5(bright) and CD8(+)CD5(bright) compared with control cows, but greater percentages of CD5(dim) cells for all lymphocyte subsets. These results suggest changes in the percentages of lymphocyte subsets, monocytes, and CD5 markers are modulated by both infection status and the periparturient period.  相似文献   

7.
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0112-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
Bovine viral diarrhea virus (BVDV) has been detected in peripheral blood mononuclear cells (PBMCs) of immunocompetent animals, not being clear whether the development of a specific humoral immune response can prevent BVDV infection. The aim of this study was to evaluate the ability of non-cytopathic BVDV to replicate and produce infectious virus in PBMCs from calves pre-infected with BVDV and to elucidate the immunomodulatory effect of BVDV on these cells in an in vitro model. Quantification of virus was by quantitative PCR, while its replicative capacity and shedding into the extracellular environment was evaluated by viral titration. Apoptosis was assessed by flow cytometry analysis of annexin V and propidium iodide, and by expression of caspase-3/7. Flow cytometry was used to analyze the expression of CD14/CD11b/CD80, CD4/CD8/CD25, MHC-I/MHC-II and B-B2 markers. Our results showed that PBMCs from cattle naturally infected with BVDV were more susceptible to in vitro BVDV infection and showed a more severe apoptosis response than those from naïve animals. Non-cytopathic BVDV in vitro infection also resulted in a lack of effect in the expression of antigen presentation surface markers. All these findings could be related to the immunosuppressive capacity of BVDV and the susceptibility of cattle to this infection.  相似文献   

9.
Vaccines to prevent Trypanosoma cruzi infection in humans or animals are not available, and in many settings, dogs are an important source of domestic infection for the insect vector. Identification of infected canines is crucial for evaluating peridomestic transmission dynamics and parasite control strategies. As immune control of T. cruzi infection is dependent on humoral and cell-mediated immune responses, we aimed to define a serodiagnostic assay and T cell phenotypic markers for identifying infected dogs and studying the canine T. cruzi-specific immune response. Plasma samples and peripheral blood mononuclear cells (PBMCs) were obtained from forty-two dogs living in a T. cruzi-endemic region. Twenty dogs were known to be seropositive and nine seronegative by conventional serologic tests two years prior to our study. To determine canine seroreactivity, we tested sera or plasma samples in a multiplex bead array against eleven recombinant T. cruzi proteins. Ninety-four percent (17/18) of dogs positive by multiplex serology were initially positive by conventional serology. The frequency of IFNγ-producing cells in PBMCs responding to T. cruzi correlated to serological status, identifying 95% of multiplex seropositive dogs. Intracellular staining identified CD4+ and CD8+ T cell populations as the sources of T. cruzi lysate-induced IFNγ. Low expression of CCR7 and CD62L on CD4+ and CD8+ T cells suggested a predominance of effector/effector memory T cells in seropositive canines. These results are the first, to our knowledge, to correlate T. cruzi-specific antibody responses with T cell responses in naturally infected dogs and validate these methods for identifying dogs exposed to T. cruzi.  相似文献   

10.
11.
Johne's disease caused by Mycobacterium avium subsp. paratuberculosis (MAP), is a chronic enteric disease of cattle. The mechanism how MAP can co-exist in the gastro-intestinal tract despite a massive infiltration of immune cells is not known. Toll-like receptors (TLRs) are known to play an important role in both innate and acquired immune responses but it is unclear what role different TLRs play in response to MAP. In this study, 38 cull cows from herds infected with MAP were classified into four groups, based on MAP culture from gut tissues and histopathological lesion scores. The expression of TLR1, 2 and 4 mRNA from MAP antigen-stimulated mesenteric lymph node (MLN) cultures and peripheral blood mononuclear cells (PBMCs) and in the MLN and ileum tissues of these animals was determined. MAP antigen-specific expression of TLR1 in MLN and PBMC was significantly lower in the MAP-infected groups than the non-infected control group, suggesting that in MAP-infected animals there is impairment in the up-regulation of TLR1 in response to MAP antigen. TLR4 expression in MLN tissues was significantly higher in the severely infected group than the control group suggesting up-regulation of endogenous TLR4 expression at a site of MAP infection in animals severely affected with Johne's disease. A preliminary screening of TLR1, 2 and 4 in the cull cows revealed the presence of polymorphisms in TLR1 and TLR2. In summary, one mechanism how MAP may subvert the immune system is that there is an apparent lack of recognition of MAP antigens as foreign by TLR1 in MAP-infected cows.  相似文献   

12.
CD5 is a cell surface molecule involved in antigen recognition and is present on all T lymphocytes and a subset of B lymphocytes. The purpose of this study was to examine CD5+ expression on peripheral blood B cells from healthy, noninfected cattle and cattle with subclinical and clinical paratuberculosis. Peripheral blood mononuclear cells (PBMC) were freshly isolated or cultured for 7 days in the presence or absence of live Mycobacterium avium subsp. paratuberculosis (M. avium subsp. paratuberculosis), and then analyzed by flow cytometry for CD5 expression within the B cell subpopulation. Analysis demonstrated a significant increase (P<0.01) in B cells in clinical animals as compared to healthy control cows and subclinically infected cows. In addition, three subpopulations within the CD5+ B cell population were identified: CD5dim, CD5bright, and a minor population that was characterized as CD5extra bright. A decrease in the CD5dim B cell population along with a concomitant increase in CD5bright B cells was observed in infected cows, an effect that was highly significant (P<0.01) for subclinically infected cows in cultured PBMC. In vitro infection with live M. avium subsp. paratuberculosis did not affect CD5+ expression patterns on B cells, regardless of animal infection status. Addition of exogenous IL-10 to PBMC cultures resulted in decreased numbers of CD5(bright) B cells for healthy control cows, whereas, a synergistic effect of IL-10 and infection with live M. avium subsp. paratuberculosis resulted in increased CD5bright B cells for subclinically infected cows. These results suggest that differential expression of CD5bright and CD5dim subpopulations on B cells in animals with paratuberculosis may reflect a shift in host immunity during the disease process.  相似文献   

13.
白细胞介素-10(IL-10)增高是口蹄疫病毒(FMDV)感染过程中显著特征之一。本研究旨在探讨IL-10对FMDV感染小鼠外周血T细胞增殖及其表达效应功能相关细胞因子的影响。采用CCK-8和流式细胞术分别检测小鼠外周血T细胞增殖和T细胞表达效应功能相关细胞因子(TNF-α、IFN-γ和IL-2)。结果显示,与对照小鼠相比,FMDV感染小鼠(感染12、24、36和48 h)外周血T细胞对刀豆蛋白A刺激的增殖均显著下降(P<0.05或P<0.01);FMDV感染小鼠的外周血CD4+T细胞表达TNF-α和IL-2均显著下降(均P<0.01),CD8+T细胞表达TNF-α、IFN-γ和IL-2也显著下降(P<0.01或P<0.000 1)。体内阻断IL-10/IL-10R信号或者敲除IL-10均能显著恢复FMDV感染小鼠外周血T细胞的增殖(P<0.05或P<0.01),但不影响CD4+和CD8+T细胞表达TNF-α、IFN-γ和IL-2。本研究首次揭示FMDV能抑...  相似文献   

14.
The intracellular bacterium Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease in wild and domestic ruminants. Johne's disease presents as a chronic enteritis with severe inflammation of intestinal tissues, characterized by widespread infiltration of macrophages, the target cell of MAP. Clinical signs of Johne's disease are typically accompanied by a loss of peripheral CD4+ T cell responses to MAP antigens and an increase in anti-MAP serum IgG levels. Recently, it was proposed that regulatory T cells might develop over the lengthy course of subclinical MAP infection. In the past five years, significant progress in defining bovine regulatory T cells has been made. These studies grew out of observations that IL-10 is produced by PBMCs in response to MAP antigen stimulation and that neutralization of this IL-10 could enhance IFN-γ production from MAP-antigen reactive effector T cells. Depletion studies revealed that MAP responsive cell populations producing IL-10 were largely CD4+ and CD25+, although monocytes have also been shown to produce IL-10 in response to MAP. In addition, evidence for a regulatory population of γδ T cells has also begun to accumulate. We summarize current thinking regarding regulatory T cells in MAP infection and provide data suggesting a potential link between regulatory T cells, bovine leukemia virus, and MAP.  相似文献   

15.
对鸡传染性贫血病(CIA)-传染性法氏囊病(IBD)联合免疫母鸡后的子代雏鸡免疫器官的免疫学化变化进行了研究。结果发现,混合感染CIAV、IBDV雏鸡免疫器官T细胞和IgG,IgM,IgA抗体生成细胞数量在27日龄内明显未免疫对照组、联合免疫组和联合免疫攻毒组,表明感染CIAV、IBDV的雏鸡全身免疫功能显著下降,CAI-IBD联合免疫母鸡后,子代雏鸡T细胞胞和IgG,IgM,IgA抗体生成细胞数量在27日龄内,较未免疫对照组明显增加,表明CIA-IBD联合免疫母鸡可使子代雏鸡免疫器官的免疫功能增强,能抵御强毒攻击。  相似文献   

16.
A method to assess the expansion of antigen-specific intracellular IFN-γ positive T cell subsets during the infection will be helpful for a better understanding of mycoplasmal infections physiopathology in the sheep. We analysed the percentage of antigen-specific lymphocytes positive for intracellular IFN-γ during the infection of sheep with Mycoplasma agalactiae by culturing peripheral blood mononuclear cells of infected or uninfected animals with irradiated M. agalactiae. The expansion of antigen-specific IFN-γ positive lymphocytes in infected sheep was initially sustained by CD4+ T cells at day 15 after infection, when antigen specific IgG start to be detectable, followed by CD8/IFN-γ double positive cells. γδ T-cells were not expanded at any time point analysed. IFNγ+ T cells disappear 60 days after infection, suggesting that antigen specific IFNγ+ T cells, mainly detected in the early phase of the disease, could be useful to understand the role of cell-mediated immunity during M. agalactiae infection.  相似文献   

17.
Vaccination of goat kids against paratuberculosis protects against lesions and clinical disease. The systemic cellular response was studied in goat kids 3-9 weeks after vaccination. Peripheral blood cells showed increased interferon-gamma production and expression of interleukin-2 receptor (CD25) after stimulation with Mycobacterium avium subsp. paratuberculosis antigens. The lymph node draining the vaccination granuloma was studied three weeks after vaccination in a parallel group of goat kids. In deep cortex, MHCII+ cells were observed surrounded by CD4+ T-cells, while follicular hypertrophy and hyperplasia were prominent in the subcapsular region and along connective tissue trabecula. Comparison of the local and systemic immune responses revealed an inverse relationship between CD25+ T-cells in the lymph node deep cortex and cells in peripheral blood that up-regulate CD25 upon in vitro stimulation, suggesting that activated and regulatory T-cells in the local lymph node influence the level of circulating antigen-specific T-cells following vaccination against paratuberculosis in goats.  相似文献   

18.
19.
本试验采用免疫组化法检测柔嫩艾美尔球虫感染雏鸡后盲肠黏膜sIgA+细胞和T细胞亚群的动态变化。结果发现:sIgA+细胞和CD4+T细胞数量在感染球虫后第2天就明显升高,第5天达到高峰,随后逐渐下降。而CD8+T细胞在感染球虫后第4天,才显著增加,感染后第7天达到高峰。表明雏鸡感染球虫后,机体能迅速启动黏膜免疫应答,不同的免疫细胞在抵抗柔嫩艾美尔球虫感染不同阶段发挥不同的作用。  相似文献   

20.
Porcine circovirus type 2 (PCV2) vaccination represents an important measure to cope with PCV2 infection; however, data regarding the modulation of the immune cell compartment are still limited, especially under field conditions. This study is aimed at investigating the features of the cellular immune response in conventional piglets induced by vaccination using a capsid (Cap) protein-based PCV2 vaccine compared to unvaccinated animals when exposed to PCV2 natural infection. Immune reactivity was evaluated by quantifying peripheral cell subsets involved in the anti-viral response and characterizing the interferon-gamma (IFN-γ) secreting cell (SC) responsiveness both in vivo and upon in vitro whole PCV2 recall. The vaccination triggered an early and intense IFN-γ secreting cell response and induced the activation of peripheral lymphocytes. The early increase of IFN-γ SC frequencies resulted in a remarkable and transient tendency to increased IFN-γ productivity in vaccinated pigs. In vaccinated animals, soon before the onset of infection occurred 15-16 weeks post-vaccination, the recalled PCV2-specific immune response was characterized by moderate PCV2-specific IFN-γ secreting cell frequencies and augmented productivity together with reactive CD4+CD8+ memory T cells. Conversely, upon infection, unvaccinated animals showed very high frequencies of IFN-γ secreting cells and a tendency to lower productivity, which paralleled with effector CD4CD8+ cytotoxic cell responsiveness. The study shows that PCV2 vaccination induces a long-lasting immunity sustained by memory T cells and IFN-γ secreting cells that potentially played a role in preventing the onset of infection; the extent and duration of this reactivity can be an important feature for evaluating the protective immunity induced by vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号