首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This research reveals the applied engineering basis for determining the particle size and settling velocity distributions of solids generated while rearing wild-caught premature punctuated snake-eels (Ophichthus remiger) in a prototype recirculating aquacultural system. Settled solids were sampled from the bottom of the rearing tanks, and suspended solids were sampled before filtration within the drum filter and analyzed to characterize their settling velocity and particle size properties. These particle properties are considered bioengineering parameters since they will provide biological information to improve engineering solutions for RAS solids removal processes. The average settling velocity for the settleable solids in the rearing tanks was 2.89 ± 0.02 cm s−1, and the average particle size ranged between 7.32 ± 3.41 and 19.44 ± 8.58 mm. Suspended solids within the drum filters before filtration had an average settling velocity of 0.35 ± 0.11 cm s−1 and it was found that 69.93 % of the particles size was greater than 200 μm, 15.40 % were within the range of 120 μm and 90 μm sizes, and 6.53 % were between 70 μm and 40 μm sizes. The particle physical properties, settling curves, and particle sizes curves obtained from this experience represent valuable information to be used to improve engineering design of solids handling mechanisms, especially in marine land-based systems, and in this case, applied for rearing wild-caught punctuated snake-eels. The present investigation constitutes an advance in the knowledge of applied engineering to the design of a marine aquaculture fattening operation targeted to feed up wild-caught premature punctuated snake-eels to the point of sale or trade.  相似文献   

2.
The bioflocs technology (BFT) for shrimp production has been proposed as a sustainable practice capable of reducing environmental impacts and preventing pathogen introduction. The microbial community associated with BFT not only detoxifies nutrients, but also can improve feed utilization and animal growth. Biofloc system contains abundant number of bacteria of which cell wall consists of various components such as bacterial lipopolysaccharide, peptidoglycan and β‐1, 3‐glucans, and is known as stimulating nonspecific immune activity of shrimp. Bioflocs, therefore, are assumed to enhance shrimp immunity because they consume the bioflocs as additional food source. Although there are benefits for having an in situ microbial community in BFT systems, better understanding on these microorganisms, in particular molecular level, is needed. A fourteen‐day culture trial was conducted with postlarvae of Litopenaeus vannamei in the presence and absence of bioflocs. To determine mRNA expression levels of shrimp, we selected six genes (prophenoloxidase1, prophenoloxidase2, prophenoloxidase activation enzyme, serine proteinase1, masquerade‐like proteinase, and ras‐related nuclear protein) which are involved in a series of responses known as the prophenoloxidase (proPO) cascade, one of the major innate immune responses in crustaceans. Significant differences in shrimp survival and final body weights were found between the clear water and in the biofloc treatments. mRNA expression levels were significantly higher in the biofloc treatment than the clear water control. These results suggest that the presence of bioflocs in the culture medium gives positive effect on growth and immune‐related genes expression in L.vannamei postlarvae.  相似文献   

3.
High stocking density aquaculture can result in major environmental impacts such as waste disposal with high organic matter. In order to overcome this issue, biofloc technology (BFT) has arisen as an alternative to lower effluent nutrient loading by promoting dense microbial communities that control water quality through the assimilation of inorganic nutrients. Given the central role of microorganisms in nutrients storage, the aim of this study was to evaluate the elemental composition of bioflocs and free‐living microorganisms and to determine which environmental factors are associated with the variation in their stoichiometric ratios (C:N:P) in shrimp farming systems. Samples were taken in marine shrimp farms, and the stoichiometric ratios from bioflocs and free‐living microorganisms were analysed, as well as physical and chemical water quality variables. The C:N ratios were lower, and N:P ratios were higher in the free‐living microorganisms than bioflocs. The C:P and N:P ratios of the biofloc were lower at higher temperature and total suspended solids (TSS). We concluded that the elemental composition of the bioflocs is richer in C and P and that systems with higher temperature and higher TSS have a greater ability to absorb and immobilize these elements in the bioflocs.  相似文献   

4.
In vivo digestibility determination in shrimp is a challenge because these animals are coprophagous, benthic and slow feeders and the small amount of feces that they produce is difficult to collect. The objective of this study was to evaluate an efficient tank design for the purpose of studying shrimp digestibility. Different tank designs were evaluated considering drain system (dual-drain and single-drain), water inlet flow rate (8, 12, and 16 L min−1) and bottom drain diameter (6, 13, 19, 25 and 50 mm) and their effects on tank hydraulics, water velocity and solids flushing. A circular and slightly conical 500 L tank was adapted with a clarifier for the two dual-drain designs (Cornell-type and central-type) and settling columns for the two single-drain designs (Guelph-F and Guelph-L). Results showed that: (1) water rotational velocity profile was more homogeneous in tanks with larger bottom drain outlets, and water velocity increased with water inlet flow rate from almost zero up to 14.5 ± 0.7 cm s−1; (2) solids flushing, measured as the percentage of feed pellets retained at both the bottom drain and in the settling devices, was positively correlated with the surface loading rate (L min−1 flow per m2) and was more effective at the Guelph-L design fitted with a 150 mm diameter settling column. In this system 100% of the solids were removed at the inflow rate of 16 L min−1. It can be concluded that among the systems evaluated, the Guelph-L at an inflow-rate of 12 L min−1 was most efficient for both solids removal and water velocity profile and thus seemed more suitable for shrimp digestibility studies in high performance conditions. Technologies involving hydrodynamic must be intensively applied to solids removal for aquatic species production as well as research purposes like digestibility, which is highlighted in this study.  相似文献   

5.
Nitrogen (N) and phosphorus (P) budgets in a bioflocs technology (BFT) aquaculture system and a recirculation aquaculture system (RAS) during over-wintering of tilapia (GIFT Oreochromis niloticus)for 64 d were compared in the current study. Fish feed was the major input of N in both systems, specifically, 94±0 % and 82±4 % for the RAS and BFT aquaculture system, respectively. The rate of N recovery in the BFT aquaculture systems was estimated to be 48±5 % of input N, which was significantly different from that of the RAS (37±4 %). There was no significant difference between the RASs and BFT aquaculture systems in terms of P recovery rate. The regular backwashing of the drum filter and biological filter in RAS accounted for 41 ± 2 % of input N and 39 ± 2 % of input P. Approximately 54 % of unassimilated nitrogen N was removed by nitrification in the BFT aquaculture systems. The results from the present study suggest that nitrification may be the dominant pathway for ammonia removal in a BFT aquaculture system rather than by heterotrophic bacterial assimilation.  相似文献   

6.
Effect of different carbon sources on nursery performance of Pacific white shrimp (Litopenaeus vannamei) cultivated in biofloc system was investigated. Shrimp postlarvae (98.47 ± 8.6 mg) were fed for 32 days in tanks with water volume of 130 L and density of 1 individual L?1. One control treatment and four biofloc treatments (BFT1, BFT2, BFT3 and BFT4) with adding different carbon sources including molasses, starch, wheat flour and mixture of them, respectively, were considered at equal weight ratios. According to the results, salinity, dissolved oxygen and pH were not significantly different among the biofloc treatments (P > 0.05). Maximum pH (8.27) and maximum dissolved oxygen (6.35 mg L?1) were recorded in the control. Maximum (0.43 mg L?1) and minimum (0.09 mg L?1) ammonia were recorded in the control and BFT2, respectively (P < 0.05). Using simple carbohydrates (molasses and starch) lowered the ammonia concentration significantly. The highest increase in body weight (1640.43 ± 231.28 mg), growth rate, specific growth rate (8.97 ± 0.42% per day) and biomass (190.29 ± 26.83 mg) were found in BFT1 and the highest survival (90 ± 0.77%) was found in BFT4. The highest feed conversion (1.52 ± 0.23) and the lowest feed efficiency (66.81 ± 7.95) were observed in the control (P < 0.05). The proximate composition analysis revealed an increase in lipid and ash in biofloc treatments. Results indicated that using biofloc technology with zero‐water exchange system and adding carbon sources could help to recycle waste and improve the water quality. Moreover, the type of carbonaceous organic matter as a substrate for heterotrophic bacteria would be effective in degradation and metabolization of ammonia and nitrite.  相似文献   

7.
In a Biofloc Technology System (BFT), there is constant biofloc formation and suspended solids accumulation, leading to effects on water quality parameters that may affect the growth performance of cultured shrimp. This study aimed to analyse during biofloc formation the effect of different total suspended solids (TSS) levels on water quality and the growth performance of Litopenaeus vannamei shrimp in a BFT system. A 42‐day trial was conducted with treatments of three ranges of TSS: 100–300 mg L?1 as low (TL), 300–600 as medium (TM) and 600–1000 as high (TH). The initial concentrations of 100 (TL), 300 (TM) and 600 mg L?1 (TH) were achieved by fertilization before starting the experiment. Litopenaeus  vannamei juveniles with an average weight of 4.54 ± 1.19 g were stocked at a density of 372 shrimp m?3. Physical and chemical water parameters and shrimp growth performance were analysed. After 6 weeks, TSS mean concentrations were 306.37, 532.43 and 745.2 mg L?1 for, respectively, TL, TM and TH treatments. Significant differences (P < 0.05) were observed in TSS, settleable solids, pH, alkalinity and nitrite, especially between the TL and TH treatments. Similarly, differences (P < 0.05) were observed in the growth performance parameters, specifically final weight, survival, feed conversion and productivity. The water quality parameters at lower range of total suspended solids concentration (TL) treatment resulted in a better performance of L. vannamei in the BFT system. The maintenance at range of 100–300 mg L?1 TSS is thus important to the success of shrimp culture.  相似文献   

8.
A feeding trial was carried out to determine the effects of bioflocs on dietary protein requirement in juvenile whiteleg shrimp, Litopenaeus vannamei. Four bioflocs treatments (BFT) and one control group were managed: BFT fed diets 25% of crude protein (CP) (BFT‐25%), 30% CP (BFT‐30%), 35% CP (BFT‐35%) and 40% CP (BFT‐40%), and clear water control without bioflocs fed with 40% CP (CW‐40%). Triplicate groups of shrimp (initial body weight, 1.3 g) were fed one of the test diets at a ratio of 7% body weight daily for 8 weeks. At the end of the feeding trial, significantly (P < 0.05) higher weight gain and specific growth rate were obtained in shrimp fed BFT‐35% and BFT‐40% compared to BFT‐25% and BFT‐30%. Shrimp fed BFT‐35% exhibited the lowest feed conversion ratio. Significantly higher muscle nucleic acid indices were also recorded such as DNA content in BFT‐30%, RNA content in BFT‐35% and RNA/DNA ratio than that of shrimp fed control. Total protein level in the haemolymph of shrimp fed BFT‐40% was significantly higher than those of shrimp fed BFT‐25% and BFT‐30%. Therefore, the present results demonstrated that, when L. vannamei juveniles were reared in bioflocs‐based tanks, dietary protein level could be reduced from 40% to 35% without any adverse effect on shrimp growth performance, body composition and haemolymph characteristics. [Correction added on 20 May 2015, after first online publication: sentence modified to clarify the reduction in dietary protein level.].  相似文献   

9.
通过向养殖水体中泼洒糖蜜构建生物絮团养殖模式,分析生物絮团营养组成,并探讨生物絮团对罗氏沼虾体组成和消化酶活性的影响。试验分对照组和试验组(生物絮团组),其中试验组在养殖过程中泼洒糖蜜。试验在室内水泥池内(2 m×2 m×0.6 m)进行,每个处理有3个重复,每个重复225尾虾(0.26 g±0.02 g),试验周期为90 d。养殖过程中不换水,糖蜜的泼洒量根据饲料投喂量进行计算(C/N为20)。结果显示:添加糖蜜能够显著促进生物絮团的形成,到第90天时,试验组的絮团体积达21.22 mL/L;而对照组为6.03 mL/L;试验组絮团粗蛋白含量为29.47%,粗脂肪含量为4.32%,二者均显著高于对照组,而粗灰分含量为11.36%,显著低于对照组;泼洒糖蜜对罗氏沼虾体组成的影响不显著,对照组和试验组肌肉粗蛋白含量分别为21.09%和21.20%,粗脂肪含量分别为2.91%和3.06%;另外,向水体中泼洒糖蜜对罗氏沼虾消化酶活性影响显著。试验组罗氏沼虾肠脂肪酶活性、胃脂肪酶活性和胰脂肪酶活性均显著高于对照组;试验组罗氏沼虾糜蛋白酶活性、胰蛋白酶活性也均显著高于对照组。但泼洒糖蜜对肠淀粉酶、胃蛋白酶、胃淀粉酶、胰淀粉酶和纤维素酶活性没有显著影响。试验表明,生物絮团营养组成丰富,能够有效提高消化酶活性。  相似文献   

10.
Biofloc systems rely on suspended solids in the water to house microbes that can remove or cycle nitrogenous wastes; however, nitrogen cycling can be inconsistent. In contrast, external biofilters are used in many recirculating systems to provide a more consistent environment for microbes to process nitrogen. Regardless of the biofiltration approach, solids levels must be controlled to prevent issues in shrimp such as gill fouling, low dissolved oxygen levels, and other negative impacts. The purpose of this study was to examine the effects of settling chambers versus foam fractionators for solids filtration and to compare external biofilters to the biofloc approach as biofiltration strategies. Sixteen 1-m3 round, polyethylene tanks were randomly assigned to four treatments, each of which had four replicate tanks. Eight biofloc systems were established: four using settling chambers for solids control (BF-S) and four using foam fractionators (BF-F). The other eight tanks used external biofilters; four had settling chambers (EB-S) and the other four had foam fractionators (EB-F). All 16 systems were stocked with 250 shrimp at an average size of 4.3 g which were grown for 85 days. There were no significant differences in shrimp production between treatments; however, variability was high in biofloc systems. Nitrite levels were significantly lower in systems with fractionators compared to systems with settling chambers. The concentrations of dissolved Na, Mg, Ca, Sr and Ba in the water were significantly reduced in treatments with settling chambers. The results of this study show that filtration choices significantly impact short- and long-term water quality and reusability but may not have much effect on shrimp production in the short-term.  相似文献   

11.
Biofloc systems rely on microbial processes in the water column to recycle animal waste products, reducing the need for water exchange. These increases biofloc concentration in the water and some form of removal is needed. An experiment was carried out to evaluate two management practices to control biofloc in Litopenaeus vannamei culture. Six tanks (48 m3) were divided into two treatments: water exchange and solid settler. Shrimp were stocked at 164 shrimp m?2 and with 0.67 g of weight. After 61 days, shrimp under solid settler treatment demonstrated mean weight of 12.7 ± 0.5 g with survival of 73.8 ± 1.4%, and those under water exchange had a final weight of 10.1 ± 0.2 g and survival rate of 57.8 ± 11.1%. Total suspended solids did not differ between the treatments: 326.8 ± 24.9 mg L?1 for water exchange and 310.9 ± 25.3 mg L?1 for solid settlers. Settleable solids and productivity/respiration ratio was higher (P < 0.05) in water exchange treatment, indicating differences in physical and biological characteristics of bioflocs. Solids removal method influenced the water use, in which 1150 ± 249 L of water was necessary to produce one kilogram of shrimp using water exchange strategy, and 631 ± 25 L kg?1 with the use of settlers. Our results indicate that continuous operation of settlers can reduce variability in solids characteristics and water quality variables such as ammonia. Both strategies are efficient in controlling biofloc concentrations of the water; however, settlers can reduce water use and improve shrimp production.  相似文献   

12.
为了解硝化型和光合自养型生物絮团对于泥鳅(Misgurnus anguillicaudatus)的养殖效果, 设置清水组(CW 组)、硝化组(BFT 组)和光合自养组(ABFT 组)生物絮团养殖泥鳅 45 d, 比较泥鳅的生长和消化酶活性、两类絮团的营养组成情况, 以及养殖水体和泥鳅肠道微生物的群落结构。结果显示, BFT 组和 ABFT 组的饲料转化率、特定生长率和末均重没有显著性差异(P>0.05)。与 CW 组相比, 两实验组的饲料转化率显著降低; BFT 组的终末密度与 CW 组相比没有显著性差异(P>0.05)。与 CW 组相比, BFT 组和 ABFT 组生物絮团可以提供(36.69±1.17)%和 (40.20±1.05)%的粗蛋白; 与 BFT 组相比, ABFT 组的生物絮团粗脂肪含量显著提高(P<0.05), 并且促进脂肪酸由饱和向不饱和转化。ABFT 的泥鳅胰蛋白酶和脂肪酶的活性显著高于另外两组(P<0.05)。微生物群落分析表明, 添加藻类对成熟生物絮团 Alpha 多样性指数、群落门水平和属水平没有显著影响。泥鳅摄食生物絮团会导致肠道菌群 sobs 指数显著降低。BFT 组肠道的优势菌群为变形菌门(Proteobacteria)、放线菌门(Actinobacteriota)和绿弯菌门 (Chloroflexi); ABFT 组为变形菌门和蓝藻门(Cyanobacteria)。属水平上, ABFT 组检测到高水平的气单胞菌属 (Aeromonas)。本研究表明, 硝化型和光合自养型生物絮团养殖均适合作为泥鳅绿色健康养殖的新模式。  相似文献   

13.
The initial stages of rearing marine shrimp using biofloc technology (BFT) involve the biofloc formation process. At the same time, there is an increase in the levels of total suspended solids and a decrease in alkalinity and pH. This reduction of alkalinity and pH occurs due to the consumption of inorganic carbon by the autotrophic bacteria present in the bioflocs and biofilms. The aim of this study was to evaluate the effects of different alkalinities on water quality and the zootechnical performance of the marine shrimp Litopenaeus vannamei in a BFT system. The experiment consisted of four treatments, with three replicates each: 75, 150, 225 and 300 mg CaCO3/L. To maintain the alkalinity at the established level, sodium bicarbonate was applied. For the experiments, twelve experimental units (area = 0.20 m2) with an effective volume of 50 L were stocked with 30 juvenile L. vannamei (0.20 ± 0.07 g), to achieve a stocking density of 150 shrimps/m2 and were maintained for an experimental period of 49 days. The 75 treatment presented the highest levels of ammonia and nitrite throughout the study, compared to the 150 and 300 treatments. The results showed that higher alkalinity favors biofloc formation and the establishment of nitrifying bacteria.  相似文献   

14.
The experiment was conducted with three biofloc treatments and one control in triplicate in 500 L capacity indoor tanks. Biofloc tanks, filled with 350 L of water, were fed with sugarcane molasses (BFTS), tapioca flour (BFTT), wheat flour (BFTW) and clean water as control without biofloc and allowed to stand for 30 days. The postlarvae of Litopenaeus vannamei (Boone, 1931) with an Average body weight of 0.15 ± 0.02 g were stocked at the rate of 130 PL m?2 and cultured for a period of 60 days fed with pelleted feed at the rate of 1.5% of biomass. The total suspended solids (TSS) level was maintained at around 500 mg L?1 in BFT tanks. The addition of carbohydrate significantly reduced the total ammonia‐N (TAN), nitrite‐N and nitrate‐N in water and it significantly increased the total heterotrophic bacteria (THB) population in the biofloc treatments. There was a significant difference in the final average body weight (8.49 ± 0.09 g) in the wheat flour treatment (BFTW) than those treatment and control group of the shrimp. Survival of the shrimps was not affected by the treatments and ranged between 82.02% and 90.3%. The proximate and chemical composition of biofloc and proximate composition of the shrimp was significantly different between the biofloc treatments and control. Tintinids, ciliates, copepods, cyanobacteria and nematodes were identified in all the biofloc treatments, nematodes being the most dominant group of organisms in the biofloc. It could be concluded that the use of wheat flour (BFTW) effectively enhanced the biofloc production and contributed towards better water quality which resulted in higher production of shrimp.  相似文献   

15.
The present work evaluated the use of molasses as a carbon source during the nursery rearing of Farfantepenaeus brasiliensis in a Biofloc technology system. During a 30 days trial, three replicate tanks were randomly assigned to the following treatments: 1.) molasses (with molasses addition) and 2.) control (without molasses addition). Bacteriological analysis was used to quantify the abundance of presumptive Vibrio spp. between control and molasses treatment. The concentration of this microorganism was lower in molasses compared with control. For the immunological analysis, shrimp haemolymph was collected to determine the total haemocyte count and the total protein concentration. The immunological results were not different between treatments. The performance results of shrimp reared with molasses addition showed that the survival rate (88.87 ± 6.36), the mean final weight (1.22 ± 0.38) and the specific growth rate (0.0309 ± 1.06) were significantly higher compared with control (80.5 ± 2.42; 1.03 ± 0.13; 0.0256 ± 0.97 respectively). Moreover, the addition of molasses contributed to the maintenance of water quality and lower concentration of presumptive Vibrio spp. The control presented an unstable variation of Vibrio spp. reaching values of 80 × 102 CFU/ml, while the highest result of molasses was 20 × 102 CFU/ml, confirming the beneficial effects of molasses addition.  相似文献   

16.
从对虾养殖池中分离到1株细菌(编号2013042402,简称菌株02),分别用16S rDNA序列比对法和细菌全细胞脂肪酸气相色谱法对该菌进行鉴定.结果显示,菌株02为芽孢杆菌(Bacillus sp.).为探讨该芽孢杆菌在生物絮团对虾养殖中的使用效果,实验分别设置加菌加糖组(菌株02的量为2.0× 104 CFU/ml,蔗糖量为饵料的70%)、加菌组、加糖组(生物絮团组)及空白对照组,研究了菌株02对养殖水质(温度、盐度、溶氧、pH、氨氮及亚硝酸氮)、对虾存活率及水体中主要菌群组成等指标的影响.结果显示,加菌加糖组能显著降低养殖水体中的氨氮和亚硝酸氮浓度,提高对虾存活率.生物絮团对虾养殖系统中添加菌株02,能够改善菌群结构,抑制弧菌生长.研究结果可为生物絮团对虾养殖中定向培养有益微生物提供技术支持.  相似文献   

17.
In zero-exchange superintensive culture systems, flocculated particles (bioflocs) accumulate in the water column. Consequently, some control over the concentration of these particles must be performed. The objective of this study is to evaluate the effects of three concentrations of bioflocs on microbial activity, selected water quality indicators and performance of Litopenaeus vannamei in a tank system operated with no water exchange. A 44-day study was conducted with juvenile (6.8 g) shrimp stocked in twelve 850 L tanks at a stocking density of 459 shrimp m−3. Biofloc levels were expressed as three presets of total suspended solids (TSS) concentrations, as follows: 200 mg L−1 (T200), 400–600 mg L−1 (T400–600), and 800–1000 mg L−1 (T800–1000). TSS levels were controlled by attaching a 40 L settling tank to each culture tank. Reduction of TSS to concentrations close to 200 mg L−1 decreased the time of bacterial cell residence and significantly reduced the nitrification rates in the water (P < 0.05). The tanks in the T200 treatment had a greater variability of ammonia and nitrite (P < 0.05), which led to the need to increase the C:N ratio of the organic substrate to control ammonia through its assimilation into heterotrophic bacterial biomass. But the higher production of heterotrophic bacteria in T200 (P < 0.05) increased the dissolved oxygen demand. Nitrification rates were higher (P < 0.05) in tanks with TSS concentrations above 400 mg L−1, and ammonia and nitrite were significantly lower than in the T200 tanks. We suggest that ammonia and nitrite in the T400–600 and T800–1000 tanks were controlled primarily by nitrifying bacteria, which provided higher stability of these parameters and of dissolved oxygen. Regarding shrimp performance, the reduction of TSS to levels close to 200 mg L−1 was associated with better nutritional quality of bioflocs. Nevertheless, differences in biofloc levels and nutritional quality were not sufficient to affect the weight gain by shrimp. The rate of shrimp survival and the final shrimp biomass were lower (P < 0.05) when the TSS concentrations were higher than 800 mg L−1. Analysis of the shrimps’ gills showed a higher degree of occlusion in the T800–1000 treatment (P < 0.05), which suggests that the shrimp have an intolerance to environments with a solids concentration above 800 mg L−1. Our results show that intermediate levels of bioflocs (TSS between 400 and 600 mg L−1) appear to be more suitable to superintensive culture of L. vannamei since they create factors propitious for maintaining the system’s productivity and stability  相似文献   

18.
The Biofloc Technology System (BFT) is characterized by stimulating the development of a microbial community that acts mainly in the maintenance of water quality but also promotes other benefits such as increased productivity, biosafety and serves as a supplementary source of food for reared animals. Two main groups of bacteria are involved in nitrogen removal in this system: heterotrophic bacteria and autotrophic nitrifying bacteria, present in the aggregates. Different fertilization techniques can be used for the formation and maintenance of bioflocs, depending on which group of bacteria the predominance is preferred. This study aimed to analyze the effect of different organic fertilization techniques on the bioflocs establishment, amount of water used, the production of suspended solids and the growth performance of Litopenaeus vannamei reared in the BFT System. Shrimp juveniles were stocked in 150-liter tanks at a stocking density of 300 shrimps/m³. Three treatments (in triplicate) were tested using different fertilization techniques: 1) without supplementary organic fertilization; 2) organic fertilization according to nominal ammonia reading (heterotrophic/chemoautotrophic = “mixed” system) and 3) organic fertilization according to estimated ammonia production (heterotrophic). The temperature, salinity, dissolved oxygen, pH, ammonia, nitrite, nitrate, alkalinity and total suspended solids (TSS) of the water were monitored. The water quality parameters were influenced by the treatments with differences found in the concentrations of ammonia, nitrite, nitrate, pH, alkalinity and TSS. Ammonia levels were higher in control treatment since no organic fertilization was performed. Nitrite levels were lower in heterotrophic system since the nitrifying pathway was suppressed due to daily fertilization, also resulting in lower nitrate levels. There were significant differences in the growth performance parameters, with the highest final weight and yield, as well as the lowest FCR, found in the mixed treatment. There were no significant differences among survival. The mixed system treatment used less water during production cycle compared to other treatments while the volume of solids removed was almost four times greater in the heterotrophic treatment compared to the others. These results show that adopting a mixed heterotrophic/chemoautotrophic biofloc system improves shrimp growth performance, optimize water use and decrease solids production.  相似文献   

19.
Soybean molasses was evaluated as a partial replacement for sugarcane molasses as a carbon source for biofloc development in the superintensive culture of Pacific white shrimp (Litopenaeus vannamei). A 50‐day study was conducted with juvenile (3.2 g) shrimp stocked in 16 800 L tanks at a stocking density of 250 shrimp m?3. Control of total ammonia concentration was performed by the addition of combined mixtures of soybean and sugarcane molasses to the culture water. Three different molasses treatments were evaluated using different soybean‐to‐sugarcane molasses ratios: 15–85%, 38–62% and 60–40% respectively. The control group was treated only with sugarcane molasses. Water quality, chlorophyll a concentration, heterotrophic bacterial load, Vibrio spp. concentration and zootechnical indexes were all evaluated. Total ammonia concentration was controlled by heterotrophic and chemotrophic pathways. Biofloc formation, as quantified by measuring the total suspended solids, was not altered. The Vibrio spp. concentration showed a significant reduction in treatments with soybean‐to‐sugarcane molasses ratios of 38–62% and 60–40%. All combined mixtures of soybean and sugarcane molasses could maintain water quality and productivity in the superintensive culture of L. vannamei using the biofloc system. Thus, the potential use of a residue from agroindustry as a carbon source in a biofloc culture is demonstrated.  相似文献   

20.
Protein‐dependent aquaculture generates large amounts of nutrient‐rich residuals; a feasible way to develop sustainable production systems is to integrate Decoupled Aquaponic Systems (DAPS) with residual water bioprocesses, to combine Photoautotrophic Biofloc Technology (P‐BFT) aquaculture and hydroponic horticulture. This study describes the characteristics of residual water from Oreochromis niloticus aquaculture performed with P‐BFT inoculated with Chlorella microalgae, reared during the nursery (180 fish m3) and grow‐out (55 fish m3) phases. The experiment included five treatments: photoautotrophic BFT inoculated with Chlorella sp. (M), C. sorokiniana 2714 (CV), and C. sorokiniana 2805 (CS), and chemoautotrophic (Q) and heterotrophic (H) as controls. Elemental characteristics in liquid and solid residual fractions (15 macro‐ and micronutrients) were compared among treatments and against Hoagland & Arnon solution with hydroponics and used in Nutrient Film Technique (NFT) hydroponic horticulture including five plant species: lettuce (Lactuca sativa), pak‐choi (Brassica rapa subsp. chinensis), rocket (Eruca sativa), spinach (Spinacia oleracea) and basil (Ocimum basilicum). The physicochemical parameters were ideal for O. niloticus and plants. The relationship between N:P was ideal until weeks 16–22 in the photoautotrophic treatments, compared with hydroponic solutions. Micronutrient content was greater in the solid than a liquid fraction. The best BFT effluent regarding fish and plant growth was photoautotrophic treatments. Oreochromis niloticus BFT aquaculture in photoautotrophic mode using microalgae Chlorella inoculations provided residual water beneficial to hydroponic horticulture in DAPS located in coastal arid zones where freshwater is scarce, improving aquaculture performance and reusing water and nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号