首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
为提高蓄水多坑灌施尿素条件下土壤氮素利用率和保护生态环境,通过室内蓄水多坑(土箱半径40 cm,高120 cm,蓄水坑半径16 cm,深度60 cm)物理模型试验,研究了蓄水多坑灌施下尿素在土壤中的运移转化特性。结果表明,土壤水分主要分布在地表以下20~80 cm,0~10 cm土层土壤含水率较小,同一土壤深度处蓄水坑壁附近土壤含水率大于0通量面处土壤含水率;同一土壤深度蓄水坑壁附近土壤尿素态氮量大于0通量面处的尿素态氮量,尿素的水解在9 d内基本完成,第7天水解最快,尿素水解与时间存在良好的对数函数关系;土壤铵态氮主要集中在40~60 cm土层土壤中,且r=20 cm处的量高于0通量面处的;而土壤硝态氮的分布趋势与铵态氮相反,随时间的延长,0通量面和r=20 cm处的土壤铵态氮质量分数均在40~60 cm和60~80 cm增幅较大,而土壤硝态氮质量分数表现出在90~100 cm湿润锋处增幅最大。  相似文献   

2.
为了探究蓄水坑灌下不同施肥管理方式下土壤矿质氮及肥料氮素的分布规律,并为苹果园氮肥管理方式的优选提供参考,本试验设置4个处理,包括两个施氮量水平(300; 600kg/hm~2),两个施肥次数(单次施肥;两次施肥)以及两种灌溉方式(地面灌溉;蓄水坑灌)。通过苹果园原位试验,检测不同土层中氨氮和硝氮的含量,同时利用~(15)N同位素示踪技术,检测不同土层中的肥料氮素的丰度,分析土壤中肥料氮素的分布规律,以及不同灌溉施肥管理方式下,苹果产量的响应。结果表明:①蓄水坑灌条件下,施肥量的增加明显提高0~60 cm土层氨氮含量和80~160 cm土层硝氮含量;而分次施用可以有效减少氨氮的大量累积,同时也可以在一定程度上增加硝氮含量。土壤氨氮和硝氮均主要集中于土壤中层,分别占比52.87%和56.06%。蓄水坑灌法促进土壤矿质氮集中于苹果根系吸收层。②地面灌溉条件下,肥料氮素主要集中于0~60 cm土层中。蓄水坑灌处理中,肥料氮素明显向下扩散,0~100 cm土壤中肥料氮素占比95.75%。蓄水坑灌可以有效促使肥料氮素扩散至中层土壤,并显著减少0~40 cm浅层土壤肥料氮素累积。③相较于地面灌溉,蓄水坑灌可以有效提高产量,约13.7%。同时,可以提高可溶性固形物含量,约29.8%。因此,在试验条件下,最优施肥管理方式为中施氮量(300 kg/hm~2)同时采用两次施肥的管理方式。  相似文献   

3.
水氮供应对温室黄瓜氮素吸收及土壤硝态氮分布的影响   总被引:3,自引:1,他引:2  
采用温室小区试验,研究了不同水氮供应条件对温室黄瓜氮素吸收及土壤硝态氮分布的影响。结果表明,氮素在植株体各器官中的累积量随生育期的推进不断增大,在盛果期累积量达到最大,且总体增长趋势呈"S"型;在不同生育期,黄瓜各器官中氮累积量均表现为叶茎根,而在盛果期,果实中的氮累积量达到最大,且随灌水量和施肥量的增加而增加;灌水量、施氮量及水氮交互作用对黄瓜氮累积量、UPE及PFP均有显著性影响,在同一灌水条件下,NUE、UPE及PFP均随着施氮量的增加而减少,而对于同一施氮水平,UPE、PFP均随着灌水量的增加显著提高,NUE在不同灌水量条件下变化趋势则有所不同。灌水量及施氮量对土壤硝态氮分布有重要影响,且施氮量是影响土壤硝态氮累积的关键因素,随灌水量的增加表层土壤中硝态氮累积量呈逐渐降低的趋势,而随施氮量的增加则逐渐增大,且施氮量越高,淋洗现象越明显。  相似文献   

4.
通过研究体系温度对蓄水坑灌施条件下土壤水分及氮素运移转化的影响,明确蓄水坑灌土壤水氮时空分布特征,探究土壤水氮运移迁移转化机理,以期为水肥合理灌施提供理论基础。通过模拟构建蓄水坑灌模型,以大型控温箱精确控制土壤温度,采用克里克空间插值法分析了蓄水坑灌条件不同体系温度下的水分、硝态氮、铵态氮时空分布特征,结果显示7 h左右土壤水分、养分完成入渗进入再分布阶段,土壤水分随着时间的推移其垂向和径向迁移距离均逐渐增大,同一时刻,温度越高其横向与径向迁移距离越大,且靠近蓄水坑壁区域的土壤含水率相对越低;土壤中铵态氮含量在不同温度下随时间推移均呈现先增后减的现象,低温下第15 d时土壤养分再分布核心区出现下降趋势,中、高温第10 d时已出现下降趋势,且其迁移距离远低于水分、硝态氮的迁移距离;土壤中硝态氮含量在10℃下第10 d时出现增高现象,而20、25、35℃下第5 d时已出现增高现象,由蓄水坑周边至湿润体边缘呈现"低-高-低"的分布态势。表明再分布阶段温度升高能提高水分的再分布速率,提高脲酶活性加快尿素水解转化为铵态氮,同时促进硝化反应进程抑制铵态氮在土壤中的积累,当土壤含水量过高时,会抑制土壤中氮素的硝化作用。  相似文献   

5.
设施条件下灌水量对膜孔灌土壤水氮运移分布影响研究   总被引:1,自引:0,他引:1  
通过模拟设施条件下不同灌水量灌施硝酸钾肥液试验,分析测定了灌后不同时间的土壤含水率和硝态氮分布。研究表明,不同灌水量的土壤含水率和硝态氮质量分数随着时间延长逐渐减小,以膜孔中心最大,远离膜孔中心逐渐变小;随着灌水量增大,相同位置的土壤含水率变大,而相同位置的土壤硝态氮质量分数变小;增大灌水量对土壤含水率和硝态氮分布的影响有利于植物对水分和硝态氮的吸收。  相似文献   

6.
水氮耦合对甜瓜氮素吸收与土壤硝态氮累积的影响   总被引:8,自引:0,他引:8  
在西北干旱半干旱地区,设置3个水分水平和3个氮素水平,共9个处理,应用完全随机区组试验设计,研究不同水氮处理组合对温室甜瓜氮素吸收分配、产量及土壤硝态氮分布和累积的影响。试验结果表明:甜瓜成熟期地上部干物质量以及氮素累积量以中水中氮(W2N2)处理为最大,甜瓜采收后各处理硝态氮含量在0~15 cm土层内最高,随土层的加深硝态氮含量逐渐减小。0~60 cm土层内硝态氮累积量随施氮量的增加而增大,随灌水量的增加而减小。甜瓜产量随灌水量和施氮量的增加而提高,但是在高水和高氮条件下略有下降。滴灌施肥的施氮量和灌水量控制在N2(130 kg/hm2)和W2(1.0ETc)时,有利于提高甜瓜产量,是试验地区膜下滴灌条件下温室甜瓜生产中适宜的水氮组合。  相似文献   

7.
灌水器埋深对涌泉根灌土壤水氮运移特性的影响   总被引:2,自引:0,他引:2  
为了提高涌泉根灌水肥的利用效率,采用大田入渗试验,探究了不同灌水器埋深条件下涌泉根灌土壤湿润锋运移、土壤水分及氮素分布的规律。结果表明,不同灌水器埋深对湿润锋运移距离以及扩散速率均具有较大的影响。随着灌水器埋深的增加,水平最大湿润峰和垂直湿润峰运移距离均呈递减趋势;湿润锋运移距离与入渗时间有显著的幂函数关系。灌水结束后,在灌水器处铵态氮及硝态氮量最高,距离灌水器越远,氮素量越低;随着再分布进行,铵态氮量逐渐升高,而硝态氮量逐渐降低。  相似文献   

8.
不同水氮管理模式对玉米地土壤氮素和肥料氮素的影响   总被引:4,自引:0,他引:4  
为了解决东北地区灌溉条件下水氮合理施用问题,以大田试验为基础,采用15N同位素示踪技术,设置3个灌水定额水平(W1:40 mm,W2:60 mm,W3:80 mm)和3个施氮量水平(N1:180 kg/hm~2,N2:240 kg/hm~2,N3:300 kg/hm~2),分析比较了不同水氮管理模式对玉米地土壤氮素的吸收、土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响。结果表明:随着施氮量的增加,0~100 cm土层铵态氮、硝态氮的含量和累积量均呈现增加的趋势;提高灌水量可以提高60~100 cm土层铵态氮累积量、80~100 cm土层硝态氮累积量。对土壤-作物氮平衡的研究表明,增加施氮量可以提高土壤无机氮残留量和氮素盈余,而作物氮素吸收量随着施氮量的增加呈先增后减的趋势,氮素盈余量和表观损失量随灌水量的增加表现为先降低后增加。肥料氮累积量随着施氮量的增加呈先增后减的趋势,施氮量300 kg/hm~2时肥料氮累积量占比21. 27%~31. 23%,肥料氮残留量和损失量所占比例均有所提高。玉米植株氮素中有66. 70%~75. 05%来自于对土壤氮的累积,随着施氮量的增加,玉米植株土壤氮素累积量呈先增后减的趋势。综合不同水氮管理模式对玉米地土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响得出,灌水60 mm、施氮240 kg/hm~2的水氮组合可保证肥料氮的充分利用,减少无机氮的残留和损失。  相似文献   

9.
水氮互作对宁夏沙土春玉米产量与氮素吸收利用的影响   总被引:2,自引:0,他引:2  
为探明滴灌不同水氮调控对宁夏沙土地区春玉米生长、产量、氮素吸收和根区土壤硝态氮分布及残留量的影响,设计灌水和施氮2因素、3个灌水量水平(W0.6,0.6KcET0; W0.8,0.8KcET0; W1.0,KcET0,Kc为作物系数,ET0为潜在作物蒸发蒸腾量)和4个施氮量水平(N150,150 kg/hm~2; N225,225 kg/hm~2; N300,300 kg/hm~2; N375,375 kg/hm~2),进行了大田试验。结果表明:相同灌水条件下,春玉米地上部干物质累积速率和氮素累积速率(W0.8灌水水平除外)均随施氮量的增加先增加后减小。快增期内,W1.0N300处理的春玉米地上部干物质平均累积速率和W0.8N375处理的氮素平均累积速率最大,分别为513.71、2.75 kg/(hm~2·d)。春玉米地上部干物质累积量(W0.8N375除外)和产量随施氮量的增加先增加后减小,其中W0.8N300处理的产量最大,为16 387 kg/hm~2。相比其他灌水处理,W0.8灌水水平下的营养器官氮素转运量较大,最大为41.14 kg/hm~2。随着灌水量和施氮量的增加,60~100 cm土层硝态氮累积量所占的比例逐渐增加,其中,W0.6灌水水平下,土壤残留的硝态氮主要聚集在0~60 cm土层中,W0.8灌水水平下,土壤残留的硝态氮主要聚集在0~90 cm土层中。考虑试验区年际降雨量分布不均,选取灌水量与有效降雨量之和为532 mm、施氮量300 kg/hm~2为宁夏沙土地区适宜的滴灌灌水施肥制度。  相似文献   

10.
为了探究施氮对不同质地滴灌棉田硝态氮分布及产量的影响,采用温室土柱模拟的方法,研究了滴灌条件下不同质地土壤硝态氮分布迁移特征,分析了施氮对NO_3-N和棉花产量的影响。结果表明,在灌水量一定的条件下,在砂土、壤土中施氮量分别为256.00、287.34 kg/hm~2时,相应的氮素积累量最大,皮棉产量最高,土壤硝态氮主要集中分布在30~40 cm土层,有利于棉花根系的吸收,且分别比不施氮增产43.87%和44.92%。一定施氮量下,壤土硝态氮分布的均匀性优于砂土,并且根层20~40 cm土层硝态氮量高于砂土,且比砂土平均增产6.16%。砂土、壤土中硝态氮量在各生育期总体呈现"降-增-降"的变化趋势,并且收获前期施纯氮340 kg/hm~2处理60cm土层砂土硝态氮量的第二个峰值较壤土提高15.98%,在生育期末端砂土在深层的氮素积累高于壤土,存在继续向下淋失的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号