首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of three sulphur application rates in combination with two nitrogen application rates on N2 fixation and growth of different legumes was investigated. N was applied as N-labelled 15NH4 15NO3. The 15N isotope dilution technique was used to estimate N2 fixation. At both N increments dry matter yield was highest with high S supply. Independently of the N supply, the high S application rate resulted in a significantly higher N accumulation, which was mainly caused by a higher N2 fixation rate. With the grain legumes the weight of nodules was increased by the high S application rate. The higher number of nodules per pot with optimum S supply was the result of a better root growth. Rates of acetylene reduction correlated significantly with S supply.  相似文献   

2.
Summary Plants grown from seed with high (1.5–7.3 g Mo seed-1) and low (0.07–1.4 g Mo seed-1) Mo contents were grown in the presence and absence of Mo in growth media (perlite) or in a flowing-solution culture, in a controlled environment. Neither the high (1.5 g Mo seed-1) nor the low (0.1 g Mo seed-1) Mo content in seed from a small-seeded genotype (BAT 1297) was able to prevent Mo deficiency (reduced shoot, root and nodule dry weight, N2 fixation and seed production) in growth media without an external supply of Mo, whereas both the high (7.3 g Mo seed-1) and the low (0.07 g Mo seed-1) contents in seed were able to prevent Mo deficiency in a large-seeded genotype (Canadian Wonder). Responses to Mo treatment by the Two genotypes were inconsistent between the growth media and solution culture experiments. Seed with a large Mo content (3.5 g Mo seed-1) from the Canadian Wonder genotype was unable to prevent Mo deficiency (reduced shoot and nodule dry weight and N2-fixation) in a solution culture without an external source of Mo, whereas both the large (1.7 g Mo seed-1) and the small (0.13 g Mo seed-1) contents in seed prevented a deficiency in BAT 1297. Growing plants from seed with a small Mo content, without additional Mo, reduced the seed Mo content by 83–85% and seed production by up to 38% in both genotypes. Changes in seed size and increases in shoot, root and nodule dry weight occurred, but varied with the genotype and growth conditions. These effects were also observed in some cases where plants were grown with additional Mo, demonstrating that the amount of Mo in the seed sown can influence plant nutrition irrespective of the external Mo supply. Nodule dry weight, total N content of shoots and seed production were improved by using seed with a small Mo content (1.64–3.57 g Mo seed-1) on acid tropical soils in Northern Zambia. Plants of both the large- and small-seeded genotypes grown from seed with a small Mo content (<1.41 g Mo seed-1) had a smaller nodule weight, accumulated less N and produced less seed. The viability of seed with a small Mo content was lower (germination up to 50% less) than that of seed with a large Mo content.  相似文献   

3.
Plant growth performance, the P content in root and nodule tissues, and nodulation and N2-fixing ability were studied in four provenances of Acacia mangium from Papua New Guinea following different levels of P fertilizer application. A. mangium did not seem to need high levels of P for growth and N2 fixation. The response by this leguminous tree to the P supply varied significantly according to provenance and to P concentrations in the culture solution. The provenances of A. mangium were classified into three types according to their P response: (1) Growth performance, nodulation, and N2 fixation of plants were stimulated as concentrations of P increased (provenance PH 482); (2) the maximal effect of P on plant growth was found only at P concentrations higher than 500 M (provenance PH 484); and (3) the plant response to P fertilization was low, even with nutrient solutions containing P concentratins higher than 500 M (provenances PH 483 and PH 485). Provenance PH 483 was distinguished by its low nodulating ability. However, this provenance grew well, probably because of its high N2 fixation efficiency as expressed by specific acetylene reduction activity and its high P content in nodule tissues. Therefore, in certain cases, these two parameters may be useful criteria in selecting leguminous plants for field use. Statistical analyses of the study results showed that the effect of the factor P supply on N2 fixation efficiency and nodule development was only significant at P concentrations lower than 250 M whereas the effect of the factor plant provenance was significant regardless of the P concentration used. This observation emphasizes the value of provenance screening in the identification of plants for use in a wide range of soil types.  相似文献   

4.
Summary The nitrogenase activity of irrigated and rainfed plants of mung bean, cluster bean and moth bean was studied throughout the growth period in order to estimate the reduction in the potential nitrogen fixation (C2H2 reduction) rate due to field water deficits. Nitrogenase activity followed a similar trend in all crops and was dependent on both plant ontogeny and soil moisture levels. The loss of activity due to water deficits varied from 13% to 100% at different growth stages and was related to the plant water potential. The specific activity was directly correlated with the plant water potential under both the treatments. The average loss of nitrogen fixation rate during the season did not differ markedly among crops. There was an accumulation of ureides in the nodules with increasing field moisture stress in mung bean and moth bean while no such effect was found in cluster bean. The significance of these results is discussed in the N-economy of these legumes grown in the drought-prone areas of the Indian desert.  相似文献   

5.
The variation in P uptake and use efficiency and N accumulation by Gliricidia sepium (N2-fixing tree), Senna siamea and S. spectabilis (leguminous non-N2-fixing trees) were examined in the field at Fashola (savanna zone), southwestern Nigeria, using four P rates, 0, 20, 40 and 80 kg P ha-1. Growth of G. sepium and S. spectabilis responded to P application at 24 weeks after planting (WAP) and average yield increases of 58% and 145% were observed by the application of 40 kg P ha-1 for the two species, respectively. Such a P response was not found in S. siamea at 24 WAP and for any of the species at 48 WAP. G. sepium accumulated more P (on average 162%) than S. siamea and S. spectabilis at 24 WAP and had greater root length and a higher percentage of mycorrhizal infection. However, at 48 WAP S. siamea had 2.5 times more P than G. sepium. Differences in the physiological P use efficiency (PPUE) between G. sepium and the non-N2-fixing trees were significant at the 0 P level, being higher for S. siamea (average, 0.61 g shoot mg-1 P) than for G. sepium (0.27 g shoot mg-1 P). G. sepium had a consistently lower atom % 15N than S. spectabilis, while that of S. siamea for most of the time did not differ from that of G. sepium. The reference plant affected N2 fixation extimates, with negative values and a higher variability (CV 60%) associated with S. siamea than with S. spectabilis (CV<20%). Consequently, S. spectabilis was selected as a better reference plant for measuring N2 fixation in G. sepium. G. sepium fixed on average 35% and 54% of its N at 24 and 48 WAP, respectively. Except at the lowest P rate, percentage and amount of N fixed were not generally enhanced by P application.  相似文献   

6.
Summary Laboratory cultures, soil cultures, and natural samples of N2-fixing blue-green algae (BGA) from rice fields were analyzed for dry matter, ash, N, C, P, and a few other constituents.Results show a very large variability of the composition. Dry matter contents ranged from 0.28% to 13.6% (average 3.3%). Ash contents ranged from 15.6% to 71.3%. Nitrogen contents ranged from 1.9% to 11.8% on an ash-free basis (average 6%). Carbon content was less variable, ranging from 37% to 72% and averaging 43.7%.A decrease in N and pigment contents, and an increase in reducing sugars, was observed in aging laboratory cultures.Large differences in composition were observed between field samples and material grown in artificial medium. Soil-grown BGA and field samples were characterized by very high ash contents, N contents lower than those in laboratory cultures, and P deficiency.Extrapolation from (1) average dry matter, ash, and N contents and (2) records of BGA biomass in rice fields indicates that an algal bloom has a potentiality of about 15–25 kg N per hectare and that a BGA biomass of agronomic significance is visible to the naked eye.  相似文献   

7.
Summary The rate of H2 release from broad beans (Vicia faba) infected with Rhizobium leguminosarum Hup- was much faster than from beans infected with the Hup+ strain. Acetylene reduction and H2 release were abolished by cutting the plants down, by incubation in darkness, or after the addition of ammonium, indicating that the H2 was released by N2-fixing bacterial symbionts. In laboratory cultures using non-sterile soil, the bean plants released H2 until an equilibrium between H2 production and H2 oxidation was reached. The H2 equilibrium concentration was higher in Hup--infected bean cultures (about 3 ppm H2 in the gas phase) than in Hup+-infected cultures (0.3 ppm H2) because of the higher H2 production. The H2 release from Hup--infected bean cultures in sterile soil did not reach equilibrium. An equilibrium occurred, if Knallgas bacteria were added. However, the equilibrium value was higher (13 ppm H2) than in non-sterile soil, which seemed to be more efficient at H2 oxidation. The Knallgas bacteria exhibited a relatively high K m for H2 (> 1300 ppmv H2); this activity was observed in unplanted non-sterile soil, and in nonsterile soil planted with Hup+-infected beans or planted with Hup--infected beans which had been cut down before being assayed. All these soils also showed a second, low-K m (<50 ppm) level of H2 oxidation activity, which was presumably due to abiontic soil enzymes. In contrast, only one level of activity, which had an intermediate K m (about 200 ppm H2), was observed when the soil was planted with Hup--infected beans. The origin of this activity, which was only observed in the presence of intact, H2-producing beans, is still unknown.  相似文献   

8.
Summary Following screening, selection, characterization, and symbiotic N2 fixation with 12,5, 25.0, and 40.0 mg N kg–1 in normal and saline-sodic soils, only two Phaseolus vulgaris genotypes (HUR 137 and VL 63) and two Rhizobium spp. strains (ND 1 and ND 2) produced maximum nodulation, nitrogenase activity, plant N contents, and grain yields in saline-sodic soil, with 12.5 mg N kg–1, compared with the other strains. However, interactions between strains (USDA 2689, USDA 2674, and ND 5) and genotypes (PDR 14, HUR 15, and HUR 138) were significant and resulted in more nodulation, and greater plant N contents, nitrogenase activity, and grain yields in normal soils with 12.5 mg N kg–1 compared with salt-tolerant strains. Higher levels of N inhibited nodulation and nitrogenase activity without affecting grain yields. To achieve high crop yields from saline-sodic and normal soils in the plains area, simultaneous selection of favourably interacting symbionts is necessary for N economy, so that bean yields can be increased by the application of an active symbiotic system.  相似文献   

9.
Nitrous oxide, one of the earth-warming and ozone-destructing gases, is produced through either nitrification or denitrification depending on the O2 availability in soil. Aerobically denitrifying bacteria express denitrification tract even under the gas phase containing O2 at the ambient air level. The net reduction of exogenous N2O by novel aerobically denitrifying bacteria were studied. We carried out two different isolation strategies in the primary screening. One was to select isolates of interest out of periplasmic nitrate reductase-dependent denitrifying bacteria in a eutrophic condition. The other was to use diluted nutrient agar to allow the formation of colonies of diverse bacteria. Among aerobically denitrifying bacteria, those which showed net aerobic N2O reduction were only minor populations. As a result, eight isolates belonging to Proteobacteria were obtained from soil and cow manure. The denitrification and net N2O reduction properties of the three representative isolates, Pseudomonas sp. CM1, Thauera sp. PM2 and Paracoccus denitrificans 96, were determined separately by the acetylene inhibition method after exposure to aerobic or low O2 conditions, a 24 h starvation prior to the determination of the aerobic activity and inoculation to a cow manure-amended sterile soil. The phenotype inversion from net N2O-reducing to N2O-emitting, and vice versa, attested to the fact that activity of the N2O-producing and -reducing steps changed in different intensities to each other. The activity values and the direction of activity changes varied among the isolates. When they were inoculated in a sterilized soil microcosm at 40% maximum water holding capacity, the denitrification and the N2O-reducing activities were comparable with or, in some cases, facilitated more than those determined under the low-O2 condition. It is possible that these isolates sensed the O2 deficiency even in such a relatively dry condition. Pseudomonas sp. CM1 was unique because it lacked nitrate reducing activity and acted as a net aerobic N2O reducer.  相似文献   

10.
Summary The effects of incorporation and surface application of straw to a wetland rice field on nitrogen fixation (C2H2 reduction), bacterial population and rice plant growth were studied. Rice straw (5 t ha–1) was chopped (10- to 15-cm pieces) and applied to the field 2 weeks before transplanting IR42, a long-duration variety, and IR50, a short-duration variety. The acetylene-reducing activity (ARA) of IR42 and IR50 measured at heading stage for 3 consecutive days showed significantly higher ARA in IR42 as a result of the 2 straw application methods. Mostly up to 20 days after straw surface application and incorporation, the dark ARA in the soil, total and N2-fixing heterotrophs, and photoorganotrophic purple nonsulphur bacteria (POPNS) in the soil and in association with degrading straw were stimulated. Higher bacterial populations were associated with straw on the surface than with straw incorporated. The POPNS counts, in particular, were increased hundreds fold in the surface-applied straw treatment. Straw applications also increased the root, shoot and total plant biomass at heading stage and the total dry matter yield at harvest in both varieties. The data show the potentials of straw as a source of substrate for the production of microbial biomass and for the non-symbiotic N2 fixation to improve soil fertility and plant nutrition.  相似文献   

11.
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules.  相似文献   

12.
Summary In model experiments with a silty loam soil the effect of different C : NO inf3 sup- -N ratios on the reliability of C2H2 (1% v/v) in blocking N2O-reductase activity was examined. The soil was carefully mixed with different amounts of powdered lime leaves (Tilia vulgaris) to obtain organic C contents of about 1.8, 2.3, and 2.8%, and of NO inf3 sup- solution to give C : NO inf3 sup- -N ratios of 84, 107, 130, 156, 200, and 243. The soil samples were incubated in specially modified anaerobic jars (22 days, 25°C, 80% water-holding capacity, He atmosphere) and the atmosphere was analysed for N2, N2O, CO2, and C2H2 by gas chromatography at regular intervals. Destruction jars were used to analyse soil NO inf3 sup- , NH 4 + and C. The results clearly showed that N2O-reductase activity was completely blocked by 1% (v/v) C2H2 only as long as NO inf3 sup- was present. In the presence of C2H2, NO inf3 sup- was apparently entirely converted into N2O. The C2H2 blockage of N2O-reductase activity ceased earlier in soils with a wide C : NO inf3 sup- -N ratio (156, 200, and 243) than in those with closer C : NO inf3 sup- -N ratios (84, 107, and 130). As soon as NO inf3 sup- was exhausted, N2O was reduced to N2 in spite of C2H2. The wider the C : NO inf3 sup- -N ratio, the earlier the production of N2 and the less the reliability of the C2H2 blockage. In the untreated control complete inhibition of N2O-reductase activity by C2H2 lasted for 7–12 days. In the field, estimates of total denitrification losses by the C2H2 inhibition technique should be considered reliable only as long as NO inf3 sup- is present. Consequently, NO inf3 sup- monitoring in the field is essential, particularly in soils supplied with easily decomposable organic matter.  相似文献   

13.
Abstract

Recently there has been developments in the measurement of N2 fixation due mainly to the C2H2 reduction method (1). This method, however, has several disadvantages, especially for submerged soil, and the estimated amount of fixed N2 on the basis of the C2H2 reduction activity is not very reliable. The tracer 15N2 technique which gives a reliable estimation of the fixed N2 is too expensive for common use. Development of an alternative method suitable for submerged soil would therefore be desirable. The present authors expected that the measurement of the ratio N2/Ar in the soil solution might provide advantages for the estimation of the fixed N2 in submerged soil.  相似文献   

14.
The proportional contribution of atmospheric N2 to the N nutrition of lupin (P atm) was estimated in a field experiment following addition of NH4Cl of KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). The integrated 15N enrichment, or mean pool abundance, of nitrate extracted from 0- to 15-cm samples taken under the lupin crop on eight occasion between 28 and 190 days after sowing was used as the reference criterion to estimate P atm by the 15N-isotope dilution technique. Estimates of P atm were similar to those obtained using canola as a non-fixing reference plant, but were higher than estimates obtained using a yield-dependent model. Use of mean pool abundance obviates the need for a non-fixing reference plant, and the frequent sampling and isotope-ratio analysis of the legume biomass required with the yield-dependent model is unnecessary. However, further work is needed to validate a sampling strategy commensurate with the growth of the legume roots.  相似文献   

15.
Effect of different 15N labeled sources on the estimation of N2 fixation was investigated. The combination of 15N labeled ammonium sulfate, 15N labeled plant material, and 15N labeled ammonium sulfate with unlabeled plant material, was examined in pot experiments. Two cultivars of soybean (Glycine max) and one of mungbean (Vigna radiata) were used. No significant difference was observed among the treatments for the estimation of N2 fixation. This was due to the homogeneity and stability of the 15N abundance in soil which resulted in a similar N uptake from the soil by the N2 fixing and reference crops. The plant yield, total N uptake and amount of N2 fixed were higher in the Yellow Soil than in the Andosol. The amount of N2 fixed was strongly influenced by the plant growth and consequently it affected the plant yield. The slow decomposition of plant material in the Andosol resulted in a low yield in both the N2 fixing and reference crops. Thus, the artificial decrease of the available N content in soil, by application of plant material, did not stimulate N, fixation but suppressed plant growth and N2 fixation.  相似文献   

16.
Denitrification rates were studied using the C2H2 inhibition technique in a 2-year field experiment within plots of nodulated and non-nodulated faba beans, ryegrass, and cabbage. Denitrification rates ranged from 14.40 to 0.02 ng N2O–N g–1 soil dry weight h–1. Mean denitrification increased fourfold in plots of N2–fixing Vicia faba compared to non-nodulated V. faba mutant F48, Lolium perenne, and Brassica oleracea. The results with and without C2H2 treatment indicate that in the field the major part of this enhanced denitrification led to the endproduct N2 rather than to the ozone-degrading N2O. Higher denitrification rates of plots with N2–fixing plants in September seemed to be caused by an increase in soil NO inf3 sup- of about 20 kg ha–1 found between July and August. Soil NO inf3 sup- and soil moisture explained 67% of the variation in denitrification rates of the different soil samples over the growing seasons in the 2 years. Soil moisture explained 44% of the variation for soil planted with N2–fixing plants and 62% for soil planted with non-fixing plants. Positive exponential relationships were obtained between denitrification rates and soil nitrate (r=0.71) and soil moisture (r=0.82).  相似文献   

17.
Summary Inoculated and non-inoculated seedlings of Zea mays were grown in agricultural soils under aseptic and non-sterile conditions. Acetylene reduction activity and microbial counts were determined after 7 and 30 days of growth. Irrespective of the soil type Azotobacter spp. were commonly isolated under maize cultivation. Inoculation of agricultural soils with a suspension of A. chroococcum led to an increase in Azotobacter numbers, although this effect diminished with time. Nitrogenase activity was detected on maize roots and increased in response to the inoculation with A. chroococcum, showing that this associative growth could be of primary importance for the plant. The results of assays for acetylene reduction activity indicated that the nitrogenase activity was associated only with the root systems.  相似文献   

18.
Summary The response of the cotton plant to inoculation with six strains of Azospirillum brasilense was investigated under subtropical conditions in Egypt. Azospirilla populations and activities were increased as a result of root inoculation with liquid inoculum of Azospirillum sp. Highest C2H2 — reduction activities on roots were obtained with strains S631 and Sp Br 14 (means of 216.85 and 209.50 nmol C2H4g–1 root h–1 respectively) while strain M4 gave the lowest activity (mean of 100.8 nmol C2H4g–1 root h–1). Statistical analysis showed that Azospirillum strains 5631, Sp Br 14, E15 and SC22 significantly increased the plant dry weight and nitrogen uptake while inoculation with strains M4 and SE had no significant effect in that respect.  相似文献   

19.
We compared the concentrations and contents of protein and oil in mature seeds from nodulated and non-nodulated soybean plants grown on soils with four different N levels during maturation. We observed a positive correlation between the contents of protein and oil in seeds from nodulated plants. Seeds from nodulated plants grown on urea-treated soil showed higher protein and lower oil contents than those from plants grown on soil treated with coated slow release N fertilizer (LP-100). Contents of these compounds in seeds from nodulated plants grown on LP-100 soil were almost the same as those from non-nodulated plants on the same soil. These observations indicated that N economy in roots during seed maturation affects the contents of storage compounds. We suggested that the control of the N2 fixation activity of soybean plants and management of soil N level during seed maturation are important to determine the contents of protein and oil in seeds.  相似文献   

20.
Summary This study is an attempt to describe the dominant N2-fixing microflora associated with the roots of wetland rice. Rice cultivar Giza 171 was grown in a phytotron on two alluvial Egyptian soils for 8 days, a stage when the nitrogenase activity of undisturbed plants reached a level of 245 × 10–6 mol C2H4 h–1 g–1 dry weight of leaf. The roots and rhizosphere soils were then used for counting and isolating dominant diazotrophs. Counts and initial enrichment steps were carried out on a selective medium made of an axenic rice plantlet, the spermosphere model, incubated under 1 % acetylene. The counts were very high, exceeding 108 bacteria g–1 dry weight of rhizosphere soil. Enterobacteriaceae were dominant; most isolates were Enterobacter cloacae belonging to different biotypes in the two soils. Enterobacter agglomerans, Citrobacter freundii and Klebsiella planticola were also present as members of the dominant microflora. Azospirillum brasilense and Azospirillum lipoferum were present as well, but less abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号