首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil samples were collected from the upper soil horizon within 4 m of black locust ( Robinia pseudo-acacia) and tulip poplar trees ( Liriodendron tulipifera) from the same mixed forest in south-central Pennsylvania. The soil samples were analyzed for organic C levels, pH, NO3 -, NH4 +, catabolic diversity (Shannon diversity index; catabolic H), catabolic evenness (Simpson-Yule index; catabolic E), genetic H, and genetic E. The catabolic H and genetic H of microbes in these soils were found to correlate well with the levels of mineralized N, organic C, and pH. Significant variations in these parameters were found between the soils from near black locust and tulip poplar trees. Conditions in the soil near the black locust trees were more favorable to nitrification as indicated by the elevated pH, organic C, NO3 -, and total mineral N levels, along with lower NH4 + levels. The microbial genetic H and E were greater and the catabolic H and E were lower in the black locust soils than in the tulip poplar soils. This suggests that a more specialized environment exists in the soil near the black locust trees which selects for enhanced nitrification and the use of fewer, but preferred catabolic pathways by a more genetically diverse group of microbes that grow to a greater biomass. Conversely, the soils from near the tulip poplar trees are such that they do not select for some dominant catabolic pathways, rather they allow for the use of a greater variety of catabolic pathways by a less diverse microbial population, which appear to grow to a lower biomass. We believe that the combined application of the microbial genetic and catabolic diversity analyses, microbial biomass estimates, and traditional physico-chemical characteristics in soil studies provides information not easily available that can be useful during assessment of soil processes in different terrestrial habitats.  相似文献   

2.
In the last century, conversion of native North American grasslands to Juniperus virginiana forests or woodlands has dramatically altered ecosystem structure and significantly increased ecosystem carbon (C) stocks. We compared soils under recently established J. virginiana forests and adjacent native C4-dominated grassland to assess changes in potential soil nitrogen (N) transformations and plant available N. Over a 2-year period, concentrations of extractable inorganic N were measured in soils from forest and grassland sites. Potential gross N ammonification, nitrification, and consumption rates were determined using 15N isotope-dilution under laboratory conditions, controlling for soil temperature and moisture content. Potential nitrification rates (Vmax) and microbial biomass, as well as soil physical and chemical properties were also assessed. Extractable NH4+ concentrations were significantly greater in grassland soils across the study period (P  0.01), but analysis by date indicated that differences in extractable inorganic N occurred more frequently in fall and winter, when grasses were senescent but J. virginiana was still active. Laboratory-based rates of gross N mineralization (ammonification) and nitrification were greater in grassland soils (P  0.05), but only on one of four dates. Potential nitrification rates (Vmax) were an order of magnitude greater than gross nitrification rates in both ecosystems, suggesting that nitrification is highly constrained by NH4+ availability. Differences in plant uptake of N, C inputs, and soil microclimate as forests replace grasslands may influence plant available N in the field, as evidenced by seasonal differences in soil extractable NH4+, and total soil C and N accumulation. However, we found few differences in potential soil N transformations under laboratory conditions, suggesting that this grassland-to-forest conversion caused little change in mineralizable organic N pools or potential microbial activity.  相似文献   

3.
Recovery of soil organic matter, organic matter turnover and mineral nutrient cycling is critical to the success of rehabilitation schemes following major ecosystem disturbance. We investigated successional changes in soil nutrient contents, microbial biomass and activity, C utilisation efficiency and N cycling dynamics in a chronosequence of seven ages (between 0 and 26 years old) of jarrah (Eucalyptus marginata) forest rehabilitation that had been previously mined for bauxite. Recovery was assessed by comparison of rehabilitation soils to non-mined jarrah forest references sites. Mining operations resulted in significant losses of soil total C and N, microbial biomass C and microbial quotients. Organic matter quantity recovered within the rehabilitation chronosequence soils to a level comparable to that of non-mined forest soil. Recovery of soil N was faster than soil C and recovery of microbial and soluble organic C and N fractions was faster than total soil C and N. The recovery of soil organic matter and changes to soil pH displayed distinct spatial heterogeneity due to the surface micro-topography (mounds and furrows) created by contour ripping of rehabilitation sites. Decreases in the metabolic quotient with rehabilitation age conformed to conceptual models of ecosystem energetics during succession but may have been more indicative of decreasing C availability than increased metabolic efficiency. Net ammonification and nitrification rates suggested that the low organic C environment in mound soils may favour autotrophic nitrifier populations, but the production of nitrate (NO3?) was limited by the low gross N ammonification rates (≤1 μg N g?1 d?1). Gross N transformation rates in furrow soils suggested that the capacity to immobilise N was closely coupled to the capacity to mineralise N, suggesting NO3? accumulation in situ is unlikely. The C:N ratio of the older rehabilitation soils was significantly lower than that of the non-mined forest soils. However, variation in ammonification rates was best explained by C and N quantity rather than C:N ratios of whole soil or soluble organic matter fractions. We conclude that the rehabilitated ecosystems are developing a conservative N cycle as displayed by non-mined jarrah forests. However, further investigation into the control of nitrification dynamics, particularly in the event of further ecosystem disturbance, is warranted.  相似文献   

4.
We measured soil microbial biomass nitrogen (MBN), microbial uptake of 15N, potential net mineralization and net nitrification in the laboratory to determine the influence of tree species on nitrogen (N) transformations in soils of the Catskills Mountains, New York, USA. Organic horizon soils were taken from single species plots of beech (Fagus grandifolia), hemlock (Tsuga canadensis), red oak (Quercus rubra), sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis). 15NH4Cl was added to the soils and N pools were sampled at 1, 3, 10 and 28 days to examine microbial uptake of 15N over time. Soil MBN was about 60% lower in red oak and sugar maple soils than in the other three species. Soil pools of NO3 and rates of net nitrification were significantly greater in soils associated with sugar maple than hemlock, red oak and yellow birch. With the exception of sugar maple soils, microbial recovery of 15N was significantly greater after 10 and 28 days compared to 60 min and 1 day following 15N tracer addition. Microbial 15N recovery declined significantly within sugar maple stands within the first 3 days of incubation. Soil carbon to nitrogen ratio (C:N) was lowest in sugar maple soils and highest in red oak soils. However, correlations between soil C:N and MBN or rates of net mineralization and nitrification were not significant. Soil moisture could account for 22% of the variation in MBN and 36% of the variation in net mineralization. Soil microbial transformations of N vary among tree species stands and may have consequences for forest N retention and loss.  相似文献   

5.
The soil chemical properties and microbial numbers in three volcanic ash soils and two non-volcanic ash soils, which had been continuously subjected to the same tea cultivation practices (21 y), were investigated. The results obtained were as follows. 1) pH values of all the soils gradually decreased from the original pH value (near neutral or mildly acid pH) to strongly acid values of about 4 or lower. In contrast, long-term tea cultivation practices resulted in the increase of the total C and N contents in the surface layers (0–20 cm) while the contents remained stable in the subsurface layers (20–40 cm). The increase in the organic matter content in non-volcanic ash soils was presumably due to the accumulation of microbial residues. The availability of P increased markedly. 2) Numbers of bacteria, actinomycetes, fungi, and denitrifiers were higher in volcanic ash soils than in non-volcanic ash soils, and also higher in surface layers than in subsurface layers. The results suggest that in spite of the same cultivation practices, the soil depth and soil type affected the microbial numbers in the tea soils. Numbers of autotrophic NH4 + oxidizers were low in comparison with the numbers of autotrophic NO2 - oxidizers. Influence of soil type and soil depth on autotrophic nitrifiers was not clear. 3) Total C and N contents in the tea soils were parameters closely related to the numbers of bacteria, actinomycetes, and fungi. For actinomycetes and fungi, the prediction could be more accurate, especially for total N content, if the estimations could be made within the same soil layers. The numbers per unit of C or N were higher in the surface layers than in the subsurface layers. 4) High concentration of NO3 --N in the tea soils used suggests that nitrification could occur despite the low pH value (3.2-3.8). The negative relationship between the number of total bacteria or actinomycetes and soil NH4 +-N concentration suggests that some NH4 +-N was converted to organic microbial biomass-No.  相似文献   

6.
A laboratory experiment was designed to challenge the idea that the C/N ratio of forest soils may control gross N immobilization, mineralization, and nitrification rates. Soils were collected from three deciduous forests sites varying in C/N ratio between 15 and 27. They were air-dried and rewetted to induce a burst of microbial activity. The N transformation rates were calculated from an isotope dilution and enrichment procedure, in which 15NH4Cl or Na15NO3 was repeatedly added to the soils during 7 days of incubation. The experiments suggested that differences in gross nitrogen immobilization and mineralization rates between the soils were more related to the respiration rate and ATP content than to the C/N ratio. Peaks of respiration and ATP content were followed by high rates of mineralization and immobilization, with 1-2 days of delay. The gross immobilization of NH4+ was dependent on the gross mineralization and one to two orders of magnitude larger than the gross NO3 immobilization. The gross nitrification rates were negatively related to the ATP content and the C/N ratio and greatly exceeding the net nitrification rates. Taken together, the observations suggest that leaching of nitrate from forest soils may be largely dependent on the density and activity of the microbial community.  相似文献   

7.
Summary The chloroform fumigation-incubation method (CFIM) was used to measure the microbial biomass of 17 agricultural soils from Punjab Pakistan which represented different agricultural soil series. The biomass C was used to calculate biomass N and the changes occurring in NH4 +-N and NO3 -N content of soils were studied during the turnover of microbial biomass or added C source. Mineral N released in fumigated-incubated soils and biomass N calculated from biomass C was correlated with some N availability indexes.The soils contained 427–1240 kg C as biomass which represented 1.2%–6.9% of the total organic C in the soils studied. Calculations based on biomass C showed that the soils contained 64–186 kg N ha–1 as microbial biomass. Immobilization of NCO3 -N was observed in different soils during the turnover of microbial biomass and any net increase in mineral N content of fumigated incubated soils was attributed entirely to NH4 +-N.Biomass N calculated from biomass C showed non-significant correlation with different N availability indexes whereas mineral N accumulated in fumigated-incubated soils showed highly significant correlations with other indexes including N uptake by plants.  相似文献   

8.
Though microbial activity is known to occur in frozen soils, little is known about the fate of animal manure N applied in the fall to agricultural soils located in areas with prolonged winter periods. Our objective was to examine transformations of soil and pig slurry N at low temperatures. Loamy and clay soils were either unamended (Control), amended with 15NH4-labeled pig slurry, or amended with the pig slurry and wheat straw. Soils were incubated at −6, −2, 2, 6, and 10 °C. The amounts of NH4, NO3 and microbial biomass N (MBN), and the presence of 15N in these pools were monitored. Total mineral N, NO3 and 15NO3 increased at temperature down to −2 °C in the loam soil and −6 °C in the clay soil, indicating that nitrification and mineralization proceeded in frozen soils. Nitrification and mineralization rates were 1.8-4.9 times higher in the clay than in the loamy soil, especially below freezing point (3.2-4.9), possibly because more unfrozen water remained in the clay than in the loamy soil. Slurry addition increased nitrification rates by 3-14 times at all temperatures, indicating that this process was N-limited even in frozen soils. Straw incorporation caused significant net N immobilization only at temperatures ≥2 °C in both soils; the rates were 1.4-3.4 higher in the loam than in the clay soil. Nevertheless, up to 30% of the applied 15N was present in MBN at all temperatures. These findings indicate that microbial N immobilization occurred in frozen soils, but was not strong enough to induce net immobilization below the freezing point, even in the presence of straw. The Q10 values for estimated mineralization and nitrification rates were one to two orders-of-magnitude larger below 2 °C than above this temperature (13-208 versus 1.5-6.9, respectively), indicating that these processes are highly sensitive to a small increase in soil temperature around the freezing point of water. This study confirms that net mineralization and nitrification can occur at potentially significant rates in frozen agricultural soils, especially in the presence of organic amendments. In contrast, net N immobilization could be detected essentially above the freezing point. Our results imply that fall-applied N could be at risk of overwinter losses, particularly in fine-textured soils.  相似文献   

9.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

10.
A study was carried out to investigate the potential gross nitrogen (N) transformations in natural secondary coniferous and evergreen broad-leaf forest soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a 15N tracing study. The results showed that N dynamics were dominated by NH4+ turnover in both soils. The total mineralization (from labile and recalcitrant organic N) in the broad-leaf forest was more than twice the rate in the coniferous forest soil. The total rate of mineral N production (NH4+ + NO3) from the large recalcitrant organic N pool was similar in the two forest soils. However, appreciable NO3 production was only observed in the coniferous forest soil due to heterotrophic nitrification (i.e. direct oxidation of organic N to NO3), whereas nitrification in broad-leaf forest was little (or negligible). Thus, a distinct shift occurred from predominantly NH4+ production in the broad-leaf forest soil to a balanced production of NH4+ and NO3 in the coniferous forest soil. This may be a mechanism to ensure an adequate supply of available mineral N in the coniferous forest soil and most likely reflects differences in microbial community patterns (possibly saprophytic, fungal, activities in coniferous soils). We show for the first time that the high nitrification rate in these soils may be of heterotrophic rather than autotrophic nature. Furthermore, high NO3 production was only apparent in the coniferous but not in broad-leaf forest soil. This highlights the association of vegetation type with the size and the activity of the SOM pools that ultimately determines whether only NH4+ or also a high NO3 turnover is present.  相似文献   

11.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

12.
Biuret is a known contaminant of urea fertilisers that might be useful as a slow release N fertiliser for forestry. We studied carbon (C), net nitrogen (N) mineralisation and soil microbial biomass C and N dynamics in two forest soils (a sandy loam and a silt loam) during a 16-week long incubation following application of biuret (C 23.3%, N 40.8%, O 30.0% and H 4.9%) at concentrations of 0, 2, 10, 100 and 1000 mg kg−1 (oven-dried) soil to assess the potential of biuret as a slow-release N fertiliser. Lower concentrations of biuret specifically increased C mineralisation and soil microbial biomass C in the sandy loam soil, but not in the silt loam soil. A significant decrease of microbial biomass C was found in both soils at week 16 after biuret was applied at higher concentrations. C mineralisation declined with duration of incubation in both soils due to decreased C availability. Biuret at concentrations from 10 to 100 mg kg−1 soil had a significantly positive priming effect on soil organic N mineralisation in both soils. The causes for the priming effects were related to the stimulation of microbial growth and activity at an early stage of the incubation and/or the death of microbes at a later stage, which was biuret-concentration-dependent. The patterns in NH4+-N accumulation differed markedly between the two soils. Net N mineralisation and nitrification were much greater in the sandy loam soil than in the silt loam soil. However, the onset of net nitrification was earlier in the silt loam soil. Biuret might be a potential slow-release N source in the silt loam soil.  相似文献   

13.
Mineralization of organic matter and microbial activities in an intensively cultivated acid, N-rich peat soil planted with Salix sp. cv. aquatica were examined for 3 yr. The soil was amended with wood ash or NPK fertilizers providing N as ammonium nitrate or urea. The wood ash amendment (10 tons ha?1) increased soil pH from 4.6 to 5.5 and increased markedly all microbial activities measured, resulting in increased mineralization and N availability, and in loss of 9% total soil N during the first year. The addition of ammonium nitrate caused a corresponding though less pronounced increase in N mineralization. Cellulose decomposition increased in all amended soils, reaching rates 53–86% higher than in non-amended soil. Potential N2 fixation (C2H2 reduction) by free-living organisms was increased by the ash-amendment. Potential denitrification rates were positively correlated (r = 0.98) with the presence of water-soluble organic-C, which was more abundant in ash-amended and non-amended soils than in the soils fertilized with N.  相似文献   

14.
Tea (Camellia sinensis) is a globally important crop and is unusual because it both requires an acid soil and acidifies soil. Tea stands tend to be extremely heavily fertilized in order to improve yield and quality, resulting in a great potential for diffuse pollution. The microbial ecology of tea soils remains poorly understood; an improved understanding is necessary as processes affecting nutrient availability and loss pathways are microbially mediated. We therefore examined the relationships between soil characteristics (pH, organic C, total N, total P, available P, exchangeable Al), the soil microbial biomass (biomass C, biomass ninhydrin-N, ATP, phospholipid fatty acids—PLFAs) and its activities (respiration, net mineralization and nitrification). At the Tea Research Institute, Hangzhou (TRI), we compared fields of different productivity levels (low, medium and high) and at Hongjiashan village (HJS) we compared fields of different stand age (9, 50 and 90 years). At both sites tea soils were compared with adjacent forest soils. At both sites, soil pH was highest in the forest soil and decreased with increasing productivity and age of the tea stand. Soil microbial biomass C and biomass ninhydrin-N were significantly affected by tea production. At TRI, microbial biomass C declined in the order forest>low>high>middle production and at HJS in the order stand age 50>age 9>forest>age 90. Soil pH had a strong influence on the microbial biomass, demonstrated by positive linear correlations with: microbial biomass C, microbial biomass ninhydrin-N, the microbial biomass C:organic C ratio, the microbial biomass ninhydrin-N:total N ratio, the respiration rate and specific respiration rate. Above pH(KCl) 3.5 there was net N mineralization and nitrification, and below this threshold some samples showed net immobilization of N. A principal component (PC) analysis of PLFA data showed a consistent shift in the community composition with productivity level and stand age. The ratio of fungal:bacterial PLFA biomarkers was negatively and linearly correlated with specific respiration in the soils from HJS (r2=0.93, p=0.03). Our results demonstrate that tea cultivation intensity and duration have a strong impact on the microbial community structure, biomass and its functioning, likely through soil acidification and fertilizer addition.  相似文献   

15.
It has long been recognized that plant invasions may alter carbon(C) and nitrogen(N) cycles, but the direction and magnitude of such alterations have been rarely quantified. In this study, we quantified the effects caused by the invasion of a noxious exotic plant,Kalanchoe daigremontiana(Crassulaceae), on C and N mineralization and enzymatic and microbial activities in the soil of a semiarid locality in Venezuela. We compared soil parameters associated with these processes(C and N mineralization time and the cumulative values, fluorescein diacetate hydrolytic activity, and activities of dehydrogenase, β-glucosidase, glucosaminidase, and urease) between invaded and adjacent non-invaded sites. In addition, correlations among these parameters and the soil physical-chemical properties were also examined to determine if a positive feedback exists between nutrient availability and K. daigremontiana invasion. Overall,our results showed that C mineralization and transformation of organic compounds to NH_4~+ were favored at sites colonized by K.daigremontiana. With this species, we found the highest cumulative amounts of NH_4~+-N and C and the lowest mineralization time.These results could be explained by higher activities of urease and glucosaminidase in soils under the influence of K. daigremontiana.In addition, higher amounts of organic matter and moisture content in invaded soils might favor C and N mineralization. In conclusion,invasion of Neotropical semiarid zones by K. daigremontiana may influence the chemical and biological properties of the soils covered by this species, increasing nutrient bioavailability, which, in time, can facilitate the invasion process.  相似文献   

16.
Zeolitites (ZTs) are rocks containing more than 50% of zeolite minerals and are known to be a suitable material for agricultural purposes by improving soil physicochemical properties and nitrogen (N) use efficiency. However, little is known about their effects on soil microbial biomass. This study aimed to evaluate short-term effects of different chabazite-rich ZT (CHAZT) amendments on soil microbial biomass and activity. A silty-clay agricultural soil was amended in three different ways, including the addition of natural (5% and 15%) and NH_4~+-enriched (10%) CHAZT. Soil dissolved organic carbon (C), total dissolved N, NH_4~+, NO_3~-, NO_2~-, microbial biomass C and N, and ergosterol were measured periodically over 16 d in a laboratory incubation. To verify the microbial immobilization of the N derived from NH_4~+-enriched CHAZT, a high15N source was used for enriching the mineral to measure the microbial biomass δ15N signature. An increase in the ergosterol content was observed in the soil amended with 5% natural CHAZT. However, no similar result was observed in the soil amended with 15% natural CHAZT, suggesting that the fungal biomass was favored at a lower CHAZT application rate. In the soil amended with NH+ 4-enriched CHAZT, microbial biomass N was related to NO_3~-production over time and inversely related to NH_4~+, suggesting high nitrification process. Isotopic measurements on microbial biomass confirmed immediate assimilation of N derived from NH_4~+-enriched CHAZT. These results suggested that the NH_4~+-enriched CHAZT used in this study supplied an immediately available N pool to the microbial biomass.  相似文献   

17.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

18.
Laboratory incubation experiments with and without added urea or NH4NO3 were performed on humus from stands of beech (Fagus silvatica) grown on soils from limestone, schists, flysch and peridotites and on humus from oak (Quercus conferta) stands on soils from limestone and schists.Beech and oak humus from stands grown on soils from limestone and flysch showed considerable nitrification with a concurrent high mobilization rate of the nutrient elements Ca, Mg and K, especially in the presence of increasing urea concentrations, but no net humus N mineralization was observed. Beech humus from stands grown on soils from schists and peridotites showed no nitrification and increasing concentrations of added urea did not modify their inability to nitrify. Non-nitrifying types of humus showed considerable ammonification but their Ca, Mg and K mobilization rates were about one-tenth those observed in nitrifying humus and were inversely correlated with urea concentrations.Exchangeable Al3+ and extractable Mn were present in high concentrations in the underlying inorganic soils in all cases where nitrification was absent from the overlying humus but addition of 500 parts Al3+ and 1000 parts Mn/106 separately or in combination to a nitrifying humus failed to inhibit nitrification.An interpretation of these findings is attempted with reference to the possibility of absence of nitrification in climax vegetations and the preference of certain forest species for NH+4 or NO?3.  相似文献   

19.
Dissolved organic nitrogen (DON) represents a significant pool of soluble N in many soils and freshwaters. Further, the low molecular weight (LMW) component of DON represents an important source of N for microorganisms and can also be utilized directly by some plants. Our purpose was to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant block in soil N supply in three agricultural grassland soils. The results indicate that the conversion of insoluble organic N to LMW-DON and not LMW-DON to NH4+ or NH4+ to NO3 represents a major constraint to N supply. We hypothesize that there are two distinct DON pools in soil. The first pool comprises mainly free amino acids and proteins and is turned over very rapidly by the microbial community, so it does not accumulate in soil. The second pool is a high molecular weight pool rich in humic substances, which turns over slowly and represents the major DON loss to freshwaters. The results also suggest that in NO3 rich soils the uptake of LMW-DON by soil microorganisms may primarily provide them with C to fuel respiration, rather than to satisfy their internal N demand.  相似文献   

20.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号