首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
The effect of the addition of Lactococcus lactis subsp. lactis INIA 415, a strain harboring the structural genes of nisin Z and lacticin 481, on the formation of volatile compounds in Hispánico cheese manufactured with a mesophilic starter or with the mesophilic starter and a thermophilic starter was investigated. Addition of bacteriocin-producing L. lactis subsp. lactis INIA 415 to milk enhanced the formation of 2-methyl-propanal, 2-methylbutanal, 3-methylbutanal, 2-methyl-1-propanol, 3-methyl-1-butanol, 1-octanol, 2-butanone, and 2,3-butanedione. On the other hand, addition of thermophilic starter enhanced the formation of acetaldehyde, ethanol, 3-methyl-2-buten-1-ol, ethyl butanoate, ethyl hexanoate, 2-butanone, and 2,3-butanedione in Hispánico cheese. Stepwise discriminant analysis using the relative abundances of volatile compounds classified cheeses by type of starter, with function 1 related to thermophilic starter and function 2 to bacteriocin producer.  相似文献   

2.
Lactococcus lactis subsp. lactis INIA 415, a strain harboring the structural genes of bacteriocins nisin Z and lacticin 481, was used as adjunct culture in the manufacture of Hispánico cheese with a mesophilic starter and a thermophilic starter of high aminopeptidase activity. Addition of the bacteriocin producer promoted early lysis of mesophilic and thermophilic starter bacteria. Extracellular aminopeptidase activity in 7-day-old cheese made using mesophilic and thermophilic starters plus bacteriocin producer was 3.0-fold the level reached in cheese made without the bacteriocin producer. Proteolysis in cheese made with mesophilic and thermophilic starters plus bacteriocin-producing adjunct culture after 25 days of ripening was 1.5-fold the level reached in cheese made without the bacteriocin producer, and the level of total free amino acids was 2.9-fold the level found in cheese made without the bacteriocin producer. Cheese made with mesophilic and thermophilic starters plus bacteriocin producer received the highest scores for flavor quality and flavor intensity and reached in 25 days the flavor intensity score of a 75-day-old cheese made without the bacteriocin producer.  相似文献   

3.
The transgalactosylation activity of Kluyveromyces lactis cells was studied in detail. Cells were permeabilized with ethanol and further lyophilized to facilitate the transit of substrates and products. The resulting biocatalyst was assayed for the synthesis of galacto-oligosaccharides (GOS) and compared with two soluble β-galactosidases from K. lactis (Lactozym 3000 L HP G and Maxilact LGX 5000). Using 400 g/L lactose, the maximum GOS yield, measured by HPAEC-PAD analysis, was 177 g/L (44% w/w of total carbohydrates). The major products synthesized were the disaccharides 6-galactobiose [Gal-β(1→6)-Gal] and allolactose [Gal-β(1→6)-Glc], as well as the trisaccharide 6-galactosyl-lactose [Gal-β(1→6)-Gal-β(1→4)-Glc], which was characterized by MS and 2D NMR. Structural characterization of another synthesized disaccharide, Gal-β(1→3)-Glc, was carried out. GOS yield obtained with soluble β-galactosidases was slightly lower (160 g/L for Lactozym 3000 L HP G and 154 g/L for Maxilact LGX 5000); however, the typical profile with a maximum GOS concentration followed by partial hydrolysis of the newly formed oligosaccharides was not observed with the soluble enzymes. Results were correlated with the higher stability of β-galactosidase when permeabilized whole cells were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号