首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The Matylda catchment, in southern Poland, was polluted by the discharge of mine waters from a lead and zinc mine that inundated parts of a valley floor and caused the accumulation of metal-polluted sediments. After a partial reclamation of the mine site in the early 1980s, polluted sediments continue to accumulate on downstream floodplains and in fishponds. The aim of this study was to reconstruct the changes in metal dispersal during 100?years of mining and during the 40-year post-mining period and to propose a strategy for pollution mitigation in the area.

Materials and methods

Analyses of Cu, Cd, Pb, Zn, Mn, Ca, Mg and Fe concentrations, speciation of heavy metals and mineralogical analyses were undertaken on overbank sediment cores and in stream sediments. Concentrations of the same elements and macro-ions soluble in stream waters were also determined.

Results and discussion

Concentrations of Zn, Cd and Pb in the sediment profiles vary between 40,000 and 55,000, 300 and 600 and 30,000 and 50,000?mg?kg-1, respectively. Changes of metal concentrations and the stratigraphy of sediments from the floodplains, stream channels and fishponds suggest rapid changes of metal loads migrating downstream during both the mining and post-mining periods. Since the time of mine closure, fine-grained, mine-derived sediments (ca. 12?cm thick) have been the main source of pollution of post-mining sediments and surface waters. Closure of the mine was followed by a relatively short period of rapid redistribution of sediment-associated heavy metals in the stream channel. Since the 1980s, the floodplain and fishponds have received a constant supply of metals. It contrasts with the slow sediment accretion rate and a rapid decrease of metal concentrations in floodplain pools due to dilution by decomposed leaf litter. A fivefold increase of Cd content in waters over the 4.6?km reach of the Matylda stream indicates continuous leaching of this element from the contaminated valley floor.

Conclusions

Unsuccessful mine site rehabilitation is due to leaching of mine-originated sediments dispersed over the valley bottom. However, the rate of metal remobilization over the last 40?years is low because of the small thickness and widespread anoxic conditions that prevail within both recent and mine-originated sediments and the alkaline pH of stream water, which reduces metal mobility. Distribution of the contaminated layer over a large area of the valley bottom precludes cost-efficient catchment rehabilitation.  相似文献   

2.

Background, aim, and scope

In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment–water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability.

Methodology

The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann–Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size.

Results and discussion

The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48–56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As.

Conclusions

The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon.

Recommendations and perspectives

These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights.  相似文献   

3.

Purpose

The objective of this work was to evaluate the effectiveness of a plant bioassay (Phytotoxkit®) for screening ecotoxicological risks in sediments affected by mining activities.

Materials and methods

A total of 42 sediment samples affected by mining activities were studied, including 39 sediment samples from the Sierra Minera, Spain, an area affected by old extraction procedures, and three sediments from an area affected by opencast mining. These three samples were then mixed with limestone filler at 10, 20 and 30 %, providing nine stabilised samples. The total and soluble metal(loid) content (As, Cd, Cu, Fe, Pb and Zn) was determined in all samples, and the Phytotoxkit® bioassay was applied to determine the ecotoxicological effect of this procedure.

Results and discussion

The stabilised material had a neutral pH and low soluble metal(loid) concentration, similar to that of samples in which a natural attenuation process had taken place because of mixing with surrounding carbonate-rich materials. An ecotoxicological survey identified the low toxicity levels of the stabilised samples.

Conclusions

The applied bioassay is a good tool for screening metal(loid) contamination in areas affected by mining activities, since it provides information on both natural and simulated attenuation processes. The mixing of sediments with limestone filler could be applied to the remediation of zones affected by mining activities, because the toxicological effect on the tested organisms in the stabilised sediments was reduced significantly and the metal(loid) content was diminished.  相似文献   

4.

Purpose

Information about phosphorus (P) losses from agricultural catchments in Mediterranean environments is scarce. In this work, P losses in overland flow from two representative small Mediterranean catchments, one dominated by Alfisols and the other by Vertisols, were studied.

Materials and methods

At the lowest level of each catchment, overland flow was measured and several runoff samples taken in each runoff event during two growing seasons (2001–2002 and 2002–2003). After centrifugation, total P in sediments and total and molybdate reactive P in supernatant were determined. Different chemical extraction methods were used to quantify the forms of P in soils and sediments.

Results and discussion

Total P losses in the studied catchments ranged between 0.5 and 3.2 kg ha?1 year?1, losses higher than 2 kg P ha?1 being observed in one event. Phosphorus was mainly lost in the sediments, the ratio of total dissolved P to particulate P being higher in the Alfisol than in the Vertisol catchment. Phosphorus concentration in sediments from the Vertisol catchment was similar to that in the source soils, whereas sediments in the Alfisol catchment had 2.1 times more inorganic P and 9 times more organic P (OP) than the source soils. In the latter catchment, there was an enrichment in the more labile inorganic P forms in the sediments relative to the source soils, which corresponds to a relative enrichment in iron (Fe) oxides by a factor of 2.4. Alfisols had lower TP contents and exhibited lower erosion rates than Vertisols in the studied period but they posed a greater environmental risk than the latter soils because their sediments were richer in P and had a higher proportion of P in forms bound to the Fe oxides compared to the source soils—these P forms can be easily released with the onset of reducing conditions at the bottom of waterbodies.

Conclusions

A study of the P enrichment ratios and the dominant P forms in eroded sediments is therefore necessary to predict the impact of P losses from soils on the ecological quality of waterbodies.  相似文献   

5.

Purpose

Laboratory experiments were conducted to examine the potential for metal (Cu, Ni and Zn) and herbicide (simazine, atrazine and diuron) release from agricultural soil and dredged sediment in managed realignment sites following tidal inundation.

Materials and methods

Column microcosm and batch sorption experiments were carried out at low (5?practical salinity units, psu) and high (20?psu) salinity to evaluate the changes in the partitioning of metals and herbicides between the soil/sediment and the aqueous phase, and the release of metals and herbicides from soil/sediment to the overlying water column.

Results and discussion

For both the metals and herbicides, the highest contaminant loads were released from the sediment within the first 24?h of inundation suggesting that any negative impacts to overlying water quality in a managed realignment scheme will be relatively short term following tidal inundation of soil and sediment. The release of metals was found to be dependent on a combination of salinity effects and the strength of binding of the metals to the soil and sediment. In the case of the herbicides, salinity impacted on their release. Particulate organic carbon was found to control the binding and release of the herbicides, highlighting the importance of assessing soil and sediment organic matter content when planning managed realignment sites.

Conclusions

Our research demonstrates that metals and herbicides may be released from contaminated sediments and agricultural soils during initial periods of flooding by seawater in managed realignment sites.  相似文献   

6.

Purpose

This work analyzes polychlorinated biphenyl (PCB) and heavy metal contamination in fluvial sediments and soils in an urban catchment, according to the geo-accumulation index and to soil and sediment quality guidelines. The catchment is located in Coimbra, Portugal, being affected by frequent flooding, and its main stream is a tributary to one of the major rivers in Portugal (Mondego). Given the presence of industrial activities over time, some inputs of pollutants are expected, but so far, the legacy of historic pollution in this catchment has not yet been investigated.

Materials and methods

Twenty-five samples were collected from nine sampling sites at the depths of 0–20, 20–40 and 40–60 cm (to provide a historic perspective) along longitudinal profiles (streamlines) and in soils downstream of pollution sources. These samples were analyzed for six heavy metals (Cu, Cr, Pb, Cd, Zn, Ni), organic carbon, pH and ten PCBs (IUPAC numbers 28, 30, 52, 101, 138, 153, 166, 180, 204, 209).

Results and discussion

Total PCB concentrations ranged 0.47–5.3 ng g?1 dry weight (dw), and levels increase from the bottom to the top layers, suggesting an increased input over the last 100 years. PCB congener distribution shows the dominance of hexachlorobiphenyls, especially PCB138, suggesting the existence of local sources. PCB levels did not exceed sediment quality levels, placing sediments/soil under class 1 (not contaminated) or class 2 (trace contamination) with respect to PCB. All six metals exceeded the lowest effect level for sediment quality criteria, and three (Cd, Pb and Zn) largely exceeded the clean levels for dredged materials, placing sediments in class 5 (heavily contaminated). Sampling site S1 presented the highest concentrations of Zn, Pb and Cd, and historic vehicle traffic was identified as the most likely source, given the vertical and horizontal profiles.

Conclusions

High levels of Pb, Cd and Zn were found in fluvial sediments at some locations of the Loreto catchment, likely from historic traffic sources. This urban area is frequently affected by flooding events and is currently being subject to urban redevelopment. During these events/actions, historic pollutants in the sediments might surface and be redistributed, impacting the downstream ecosystem of the major Mondego River or increasing the risk of exposure of the urban population.
  相似文献   

7.

Purpose

Frequent mining activities and higher background values in soil have led to the contamination of the sediments of some rivers in southwest China by several metals and arsenic (As). This study combined multivariate analysis with geochemical approaches to differentiate mining activity from other sources, which may aid to evaluate the effectiveness of reducing mining release.

Materials and methods

Sixteen sediment samples were collected along the Yuan River, China. The total concentrations of lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), mercury (Hg), and As were measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES). The Pb isotopic composition was measured using a thermal ionization mass spectrometer (TIMES). Both geochemical approaches and multivariate statistical analysis were used to identify the sources of these metals. The fractionation of Pb was determined through a Community Bureau of Reference (BCR) sequential extraction procedure to aid the identification of the sources.

Results and discussion

The concentrations and enrichment factors (EFs) of Pb, Zn, Cu, Cd, and As in the middle reach of the river were higher than those at the other sites, indicating anthropogenic sources. The factor analysis (FA) extracted “mining and smelting,” “mixture of anthropogenic and natural,” and “natural” factors. The Pb isotope composition of metal ores was similar (206Pb/207Pb?<?1.190 and 208Pb/206Pb?>?2.023) to that found in the sediments in the middle reach, indicating anthropogenic sources of mining activities. Compared with the narrow ranges of the δ34S ratios in the bedrock (+8.5 to +9.3?‰) and the metal ores (?1.4 to +1.9?‰), the sediment samples presented a relatively wide range of δ34S ratios from ?2.6 to +9.2?‰ with a mean of +2.6?‰, which suggests a mixed composition. The BCR sequential extraction procedure revealed that the proportion of the extractable fraction in the sediments in the middle reach was higher than that in other sites, suggesting anthropogenic sources as the cause of contamination in the study area.

Conclusions

Lead, Zn, Cu, Cd, Cr, Hg, and As are mainly derived from natural materials in the upstream region. In the middle reach, these elements are the result of anthropogenic activities, particularly activities associated with the mining industry. In the downstream region, the origin of these elements is considered to be a mixture of anthropogenic and natural sources. In addition to geochemical approaches and multivariate statistical analysis, the BCR sequential extraction method is an effective procedure for the identification of the anthropogenic sources of sediment-associated metals.  相似文献   

8.

Purpose

This work explores the application of the use of Zn, Cu, and Pb relative contents as a new type of normalization method for geochemical properties of soils and sediments in an Atlantic Basin (Anllóns River, NW Spain). The method is based on the conservative behavior of these elements, which exhibit a certain concentration ratio that remains stable as long as there are no human disturbances.

Materials and methods

The average relative contents of Zn, Cu, and Pb were calculated by dividing the concentration of each metal in soils or sediments, in the <63-μm fraction, by the sum of Zn, Cu, and Pb, expressed as a percentage. The evaluation of the sum of the average relative concentrations of Zn, Cu, and Pb (Ri), together with three standard deviations for each element, namely, Ri ± 3Si, allows a hexagon to be constructed, represented in ternary diagrams of Zn:Cu:Pb. Following the method proposed by Weng et al. (Environ Geol 45:79–85, 2003), those samples falling outside the hexagon must be considered outliers.

Results and discussion

Results obtained confimed the conservative behavior between the relative contents of Zn, Cu, and Pb in surficial samples (soils, bed, and suspended sediments). Only sediment cores displayed nonconservative behavior, showing a marked Pb enrichment, with respect to the surficial samples. When Zn, Cu, and Pb relative contents were plotted in ternary diagrams, outliers were best classified when the hexagon was drawn with standard deviations of samples from the study area. The hexagon drawn with an international database of soils and sediments showed a poorer classification of outliers.

Conclusions

The results showed that total Zn, Cu, and Pb relative contents may be employed to investigate anthropogenic disturbances of these elements in soils and sediments of the Anllóns River Basin, thus corroborating that this type of normalization may be employed as a tool to assess outliers in a contaminated area.  相似文献   

9.

Purpose

The Almadén mining district has suffered long-term extraction activity, and this has left significant areas of decommissioned mining liabilities. Nowadays, the uncontrolled runoff and related erosion and transport of trace metal-enriched soils and sediments affect the whole freshwater ecosystem. The goal of this study was to distinguish geogenic from mining-related sources of trace metals in freshwater sediments, to understand their dispersion in the watershed, and, finally, to evaluate the potential environmental implications for future corrective plans.

Materials and methods

Freshwater surface sediment samples were collected from ten points along the main streams of the watershed (nine inside the mining district and one control point outside the district). Sediments were air dried and analyzed by different standard methods for pH, total major and trace element concentrations, total organic carbon, and grain size. In addition to the determination of the enrichment factor, a multi-statistical approach was applied involving discriminant analysis, Student’s t test, and Mann-Whitney U analysis.

Results and discussion

Sediments inside the district contained high levels of major and trace elements with respect to the control point. The predominance of fine fractions in these sediment samples appears to be one of the most important factors that affects trace metal concentrations. Among the trace elements, not only Hg but also As, Pb, and Zn are discriminative geochemical markers, thus allowing the identification of the different mining sources and their individual or combined impact throughout the district. Furthermore, the high enrichment factors obtained for As, Hg, Pb, and Zn with respect to the local background values highlight the persistent and severe impact from the decommissioned mines on the freshwater surficial sediments and their potential geoavailable risk for aquatic organisms.

Conclusions

The geochemistry of freshwater sediments alone demonstrates that different contamination sources are recognizable within the mining district and these can be related to the specific decommissioned mines. In addition, the discrete sources can be clearly distinguished on the basis of the statistical analysis of the geochemical data. Despite the closure of the mines, stream sediments are still the main repository of trace metals within the district, and they are therefore a potential threat to the freshwater ecosystem.
  相似文献   

10.

Purpose

Small arm shooting ranges located in peatland areas are gathering increased attention due to severe metal and antimony (Sb) contamination and challenging conditions for remediation. The goal of the present study was to gain further understanding of the distribution, binding and transport of lead (Pb), copper (Cu) and Sb in peatland contaminated by small arm shooting range activities.

Materials and methods

A field experiment was carried out at a recently closed shooting range facility in Norway, including (i) peat soil sampling for various selective extractions (water, chemical extractions, extractions by diffusive gradients in thin films, DGT), (ii) establishing groundwater wells for groundwater sampling and monitoring of groundwater level and (iii) sampling of water and sediments in surface water. The results from groundwater monitoring were used to carry out hydrogeological numerical simulations using Seep/W and CTran/W. These models were used to evaluate the residence time of the contaminants in the peatland.

Results and discussion

Increased metal concentrations were observed in the top layer of the peatland, indicating low vertical transport. Groundwater revealed high concentrations of Pb (22 ± 5 μg/L), Cu (16 ± 6 μg/L) and Sb (11 ± 2 μg/L), the dominating contaminant source to the downstream surface water. Hydrogeological modelling indicated that transport mainly happened in the upper peat layer, as a result of a higher hydraulic conductivity close to the surface and a high groundwater table. Pb (6.9 ± 0.1 μg/L), Cu (24.0 ± 0.0 μg/L) and Sb (7.4 ± 0.1 μg/L) concentrations in the stream samples confirmed the spreading of contaminants at levels toxic to aquatic organisms. Pb and Cu were most likely associated with dissolved organic carbon (DOC), whereas Sb showed no correlation with DOC.

Conclusions

The elements contaminating the peatland may leak to the nearby water course over a long-term period. Copper showed the highest concentration in the stream water despite considerably higher levels of Pb in the peat soil. Strong complexation of Cu to dissolved organic matter might explain this observation. Only a little fraction of the contaminants is transported in a particulate form, and therefore are increased sedimentation measures not considered as viable remediation option.
  相似文献   

11.

Purpose

The metal concentrations and Pb isotopic composition in sediments and plants from the Xiangjiang River, China, were investigated to understand the contamination and potential toxicity of metals in sediments; to determine the accumulation and distribution of metals in plant tissues; and to trace the possible pollution source of Pb in sediments and plants.

Materials and methods

Sediments and plants were collected from 43 sampling sites in the study region. After sediments were air-dried and passed through a 63-??m sieve, they were acid-digested and DTPA-extracted for determination of total and bioavailable metals. The plants were separated into roots, leaves, and stems; dried; cut into pieces; and digested with HNO3?CH2O2. Metals (As, Cd, Cr, Cu, Ni, Pb, and Zn) and Pb isotopic composition were analyzed by inductively coupled plasma-mass spectrometry.

Results and discussion

Maximum As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in sediments were 47.18, 55.81, 129.5, 161.6, 160.4, 430.7, and 1,098.8?mg?kg?1, respectively. The bioavailable fractions of As, Cd, Cu, Pb, and Zn had significant linear relationship with their corresponding total contents in sediments while no significant relationship was observed between bioavailable and total contents of Cr and Ni. In general, plant tissues showed higher As, Cd, Cu, Pb, and Zn concentrations and lower Cr and Ni concentrations compared with sediments. The 206Pb/207Pb ratios decreased in the order of total > bioavailable > stems ?? leaves > roots. A strong linear correlation was observed between the 208Pb/206Pb and 206Pb/207Pb ratios of the plant tissues, sediments, and the possible pollution sources of Pb in the Xiangjiang River.

Conclusions

As, Cd, Cu, Pb, and Zn demonstrated higher contamination levels in sediments and plants compared with Cr and Ni. Cd had highest potential ecological risk. The Pb from anthropogenic sources with low 206Pb/207Pb ratios was preferentially associated with the bioavailable fractions in sediments and accumulated in roots. The Pb in plant tissues is mainly derived from the Pb in sediment and is taken up through the sediment-to-root pathway.  相似文献   

12.

Purpose

Remobilization of polychlorobiphenyl (PCB)-contaminated sediments by anthropogenic activities (e.g. dredging) or natural flow conditions could lead to the release of PCBs into the water column and consequently increase the availability of PCBs to benthic organisms. The fate of the released PCBs following such events is not well understood and such knowledge is necessary for the management of contaminated sediments. The objective of this study was to understand the processes that control the fate of PCBs following remobilization of field-aged contaminated sediments.

Materials and methods

Sediments contaminated with PCBs collected from Lake Bourget (Savoie, France) were resuspended in a column experiment. The relationships between physical–chemical parameters—i.e. suspended particulate matter, pH, inorganic and organic carbon content, redox-sensitive species and the concentrations of dissolved PCBs both in the water column and in the interstitial water of the sediment—were investigated so as to determine the key processes controlling PCB fate.

Results and discussion

Following the simulated resuspension event (SRE), dissolved PCBs were found in much higher concentrations in the water column than under stationary conditions. Desorption of PCBs from the sediment depended on the degree of the hydrophobicity of the PCBs and the initial PCB content in the sediment. Principal component analysis showed that the variations in the concentrations of released PCBs over time and space closely followed those of suspended particulate matter (SPM) and not those of redox conditions. The partitioning behaviour of PCBs on SPM showed that equilibrium state was not attained within 40 days following the SRE. A particle size fractionation study, before and after remobilization of the sediment, showed the presence of PCBs in every fraction of the sediment, but with higher amounts in large particles with high organic matter content and in the finest fractions. Remobilization of contaminated sediment did not affect this distribution profoundly but a significant enrichment in PCBs of the clay-sized fraction was observed in the re-settled sediment.

Conclusions

Sediment resuspension induced non-equilibrium conditions in the water column for more than 5 weeks and led to the enrichment with PCBs of the newly formed surface bed sediment. This enrichment was due to the preferential re-sorption of PCBs on clay-sized particles during the SRE and to the physical segregation and accumulation of the less dense particles at the surface of the sediment column; such particles thought to be the principal carriers of contaminants. These changes concerned <0.05 % of the total PCB content.  相似文献   

13.
The activity of extracellular α-glucosidase, β-glucosidase and β-xylosidase were measured in stream water, interstitial water and hyporheic sediments of a small lowland stream. Percent contribution of all the activity in the solution phase (<0.2 μm) to the total enzyme activity was low (15-40%), indicating that the enzyme activities are predominantly associated with bacterial cells. Generally, hyporheic sediments dominated the enzyme activity. Stream water, interstitial water and sediments showed activites that decreased in the order β-glucosidase>α-glucosidase>β-xylosidase. The fine fraction of the sediment (<0.063 mm) had much higher enzymatic activities than the coarser fraction (0.063-1 mm). All the extracellular enzymes, had higher activities during summer, period was attributed to the maximum input of allochthonous organic carbon into the sediments being at this time. A low ratio of α-glucosidase to β-glucosidase activity in the sediments, and no obvious spatial and seasonal changes in the ratio of β-xylosidase to β-glucosidase activity, suggested that cellulose is a predominant carbon source for hyporheic heterotrophic bacteria.  相似文献   

14.

Purpose

Phosphorus (P) is a limiting nutrient for most US Midwestern aquatic systems and, therefore, increases of P, through point or non-point sources (NPS) of pollution such as agriculture, causes eutrophication. Identifying specific NPS contributions (e.g., upland vs. stream channels) for sediments and P is difficult due to the distributed nature of the pollution. Therefore, studies which link the spatial and temporal aspects of sediment and P transport in these systems can help better characterize the extent of NPS pollution.

Materials and methods

Our study used fingerprinting techniques to determine sources of sediments in an agricultural watershed (the North Fork of the Pheasant Branch watershed; 12.4 km2 area) in Wisconsin, USA, during the spring, summer, and fall seasons of 2009. The primary sources considered were uplands (cultivated fields), stream bank, and streambed. The model used fallout radionuclides, 137Cs, and 210Pbxs, along with total P to determine primary sediment sources. A shorter-lived fallout radioisotope, 7Be, was used to determine the sediment age and percent new sediments in streambed and suspended sediment samples (via the 7Be/210Pbxs ratio).

Results and discussion

Upland areas were the primary source of suspended sediments in the stream channels followed by stream banks. The sediment age and percent new sediment for the streambed and suspended sediments showed that the channel contained and transported newer (or more recently tagged with 7Be) sediments in the spring season (9–131 days sediment age), while relatively old sediments (165–318 days) were moving through the channel system during the fall season.

Conclusions

Upland areas are the major contributors to in-stream suspended sediments in this watershed. Sediment resuspension in stream channels could play an important role during the later part of the year. Best management practices should be targeted in the upland areas to reduce the export of sediments and sediment-bound P from agricultural watersheds.  相似文献   

15.

Purpose

We employ a geochemical-fingerprinting approach to estimate the source of suspended sediments collected from tributaries entering Falls Lake, a 50-km2 drinking water reservoir on the Neuse River, North Carolina, USA. Many of the major tributaries to the lake are on North Carolina’s 303(d) list for impaired streams, and in 2008, the lake was added to that list because of high values of turbidity, likely sourced from tributary streams.

Materials and methods

Suspended sediments were collected from four streams with a time-integrated sampler during high-flow events. In addition, composite sediment samples representing potential sources were collected from stream banks, forests, pastures, construction sites, dirt and paved roads, and road cuts within tributary basins. Radiocarbon dating and magnetic susceptibility measurements were used to determine the origin of stream bank alluvial deposits. Sediment samples were analyzed for the concentrations of 55 elements and two radionuclides in order to identify tracers capable of distinguishing between potential sediment sources. The relative sediment source contributions were determined by applying a Monte Carlo simulation that parameterized the geochemical tracer data in a mixing model.

Results and discussion

Radiocarbon and magnetic susceptibility measurements confirmed the presence of “legacy” sediment in the Ellerbe and New Light Creek valley bottoms. Mixing model results demonstrate that stream bank erosion is the largest contributor to the suspended sediment load in New Light Creek (62%), Ellerbe Creek (58%), and Little Lick Creek (33%), and is the second largest contributor in Lick Creek (27%) behind construction sites (43%).

Conclusions

We find that stream bank erosion is the largest nonpoint source contributor to the suspended sediment load in three of the four catchments and is therefore a significant source of turbidity in Falls Lake. The presence of legacy sediment appears to coincide with increased contributions from stream bank erosion in Ellerbe and New Light creeks. Active construction sites and timber harvesting were also significant sources of suspended sediment. Water quality mitigation efforts need to consider nonpoint-source contributions from stream bank erosion of valley bottom sediments aggraded after European settlement.  相似文献   

16.

Purpose

Surface sediments contaminated with high levels of multiple heavy metal(loid) species are very common environmental problems. Especially, the labile and bioaccessible fractions of heavy metal(loid)s in the sediments are posing serious risks to the biota and the overlaying water quality. This study aimed at developing a potential method to manage the activity of the labile fractions of heavy metal(loid)s in surface sediments.

Materials and methods

This study assessed the feasibility of adding iron powder, a low-cost industrial by-product, to sediments containing high levels of Pb, As, and Cd to adsorb labile fractions of heavy metal(loid)s onto the sorbent surfaces and to retrieve the heavy metal(loid) laden powders by applying external magnetic field. In addition, the redistribution of Pb, Cd, and As in different sediment fractions, the dissolved fraction and the sorbent-adsorbed fraction, was also investigated and characterized.

Results and discussion

The results indicate that the bioactive labile fractions (exchangeable and carbonate-bound fractions) of heavy metal(loid)s are prone to concentrating onto iron powders and can be selectively removed from the sediments by magnetic retrieval. In addition, iron addition induces conversion of labile fractions of heavy metal(loid)s into more stabilized fractions.

Conclusions

Overall, the process can effectively minimize the activity of labile fractions of heavy metal(loid)s in surface sediments.
  相似文献   

17.

Purpose

Coal-fuelled power plants can discharge hazardous materials, particularly heavy metals such as lead (Pb). An alternative way of reducing Pb concentration from contaminated sediments is through phytoremediation. Presently, there are few research findings on the phytoremediation potential of mangroves on metals like Pb. The study was conducted to survey and identify mangroves that thrive near the coal-fired power plant and to assess the phytoremediation potential of mangroves on Pb in sediment.

Materials and methods

The study sites were located in the mangrove ecosystems of Sitio Oyon and Sitio Asinan in Masinloc, Zambales, Philippines. The first stage of our study was to survey and identify the mangrove species. The second stage was to assess the levels of Pb in the sediments, water, and tissues of mangrove trees. The diversity assessment of the mangrove species was done through the use of 10?×?12 m quadrat technique. Water and sediment samples from each mangrove ecosystem were collected using composite sampling methods.

Results and discussion

Three mangrove species were identified in the study sites: Avicennia marina, Rhizophora stylosa, and Sonneratia alba. The order of importance of the mangrove trees in the two sampling locations, based on an importance value index (IVI), were as follows: SA (IVI?=?171.20)?>?AM (77.79)?>?RS (51.01). The total uptake of Pb from sediments near the power plants varied significantly (p?≤?0.001) among the three mangrove species. S. alba had the highest Pb uptake of 48.4 kg ha?1 followed by A. marina (23.1 kg ha?1), and R. stylosa (2.4 kg ha?1). These three mangrove species have the potential to phytoremediate Pb in the sediment.

Conclusions

The three mangrove species present in the coastal ecosystem near the electric power plant—A. marina, R. stylosa, and S. alba—were potential phytoremediators of sediment Pb. The present study indicated that the mangroves possess beneficial characteristics that remove Pb from contaminated sediments in areas directly affected by coal-fired power plants, and thus have potential phytoremediation properties.  相似文献   

18.

Purpose

In summer 2007, biweekly benthic fluxes of the biogenic elements carbon (C), nitrogen (N), silicon (Si), and phosphorus (P) were studied in the Se?ovlje saltern (salt-making facility) in the northern Adriatic Sea, Slovenia in order to determine the impact of stromatolite (??petola??) on the geochemical properties of saltern sediments.

Materials and methods

The brine and pore waters were analyzed for salinity, NH 4 + , NO 3 ? , PO 4 3? , SiO 4 4? , total dissolved nitrogen, total dissolved phosphorus, and fluorescent dissolved organic matter. The sediment was analyzed for organic carbon (OC), total nitrogen (TN), total and organic phosphorus (OP), and biogenic Si concentrations, as well as values of ?? 13COC and ?? 15NTN.

Results and discussion

Nutrient concentrations in brine water increased along the salinity gradient due to different processes, such as the evaporative concentrations of seawater, bacterial activity, more pronounced transformation and degradation of organic matter, and regeneration of nutrients. The petola from the Se?ovlje saltern, which is predominately composed of cyanobacterial and diatom communities, develops during the early evaporation stage and survives during high salinity and halite crystallization. Nitrogen fixation and P removal were the principal biogeochemical processes controlling dissolved inorganic N and P concentrations. At higher salinities, N limitation was more important. Microbes decomposed at higher salinities, and the remineralized N and P nutrients were released from surface pore waters to the brine. OP remineralization was also an important process influencing the distribution of PO 4 3? concentrations in pore waters deeper in the sediments. The increasing SiO 4 4? concentrations with increasing salinity in the brine waters were due to dissolution of diatom frustules, while the decrease in pore water SiO 4 4? was probably the consequence of microbial uptake.

Conclusions

This study provides a better understanding of nutrient cycling and the geochemical processes in the Se?ovlje saltern.  相似文献   

19.

Purpose

Discharge of untreated domestic and industrial waste in many European rivers resulted in low oxygen concentrations and contamination with trace metals, often concentrated in sediments. Under these anoxic conditions, the formation of insoluble metal sulfides is known to reduce metal availability. Nowadays, implementation of waste water treatment plants results in increasing surface water oxygen concentrations. Under these conditions, sediments can be turned from a trace metal sink into a trace metal source.

Materials and methods

In an ex situ experiment with metal contaminated sediment, we investigated the effect of surface water aeration on sediment metal sulfide (acid volatile sulfides (AVS)) concentrations and sediment metal release to the surface water. These results were compared with long-term field data, where surface water oxygen and metal concentrations, before and after the implementation of a waste water treatment plant, were compared.

Results and discussion

Aeration of surface water in the experimental setup resulted in a decrease of sediment AVS concentrations due to sulfide oxidation. Metals, known to precipitate with these sulfides, became more mobile and increasing dissolved metal (arsenic (As), cadmium (Cd), copper (Cu)) concentrations in the surface water were observed. Contrary to As, Cd, or Cu, manganese (Mn) surface water concentrations decreased in the aerated treatment. Mn ions will precipitate and accumulate in the sediment as Mn oxides under the oxic conditions. Field data, however, demonstrated a decrease of all total metal surface water concentrations with increasing oxygen concentrations following the implementation of the waste water treatment plant.

Conclusions

The gradual decrease in surface water metal concentrations in the river before the treatment started and the removal of metals in the waste water treatment process could not be countered by an increase in metal flux from the sediment as observed in the experiment.  相似文献   

20.

Purpose

This study investigated the behavior of cadmium (Cd), lead (Pb), nickel (Ni), and zinc (Zn) in urban sediments collected in commercial, residential, and industrial areas of the city of Porto Alegre, Brazil, and evaluated different degrees of pollution in this urban subdrainage basin through the use of the geoaccumulation index (Igeo).

Materials and methods

Concentrations of Cd, Ni, Pb, and Zn were analyzed using acid digestion (EPA method 3050) in fractions <63 μm in 20 composite samples of urban sediment collected using a portable vacuum in 20 different sampling points on roads from three areas with diverse use: commercial, industrial, and residential.

Results and discussion

The values of Igeo were commercial area (3.35, Zn; 3.76, Cd; 3.60, Ni; 2.63, Pb) > residential area (3.34, Zn; 3.36, Cd; 2.94, Ni; 1.46, Pb) > industrial area (2.74, Zn; 1.78, Cd; 3.01, Ni; 1.45, Pb), indicating that the sediment was “highly contaminated” in the case of Zn and Ni, while for Cd, it was “moderately to highly contaminated,” and for Pb, it was “moderately contaminated.” The pollution is associated with traffic flow in all areas.

Conclusions

Research should be increased to make urban systems more sustainable, reducing their pollution potential and minimizing the delivery of potentially polluting particles into freshwater bodies. The Igeo allows for the determination of a simple index of diffuse pollution state associated with urban sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号