首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose

Analysis of sediment transport is an effective approach for identifying sediment sources and for catchment management. However, a long-term analysis of sediment variability at multiple time scales is less available, especially in mountainous catchments. This study aims to determine sediment sources and to identify sediment transport dynamics, as well as the influencing factors, through analyzing long-term sediment fluxes at different time scales.

Materials and methods

In this paper, 32 years of sediment flux in an instrumented mountainous catchment in eastern Zhenjiang Province, China, was investigated at multiple time scales (i.e., monthly, seasonal, annual, and event). Sediment yields (SYs) during three time periods (i.e., 1964–1977, 1978–1989, and 2010–2015) were first classified by the Mann-Kendall and cumulative anomaly tests, and then sediment fluxes for each period were investigated and compared at multiple time scales.

Results and discussion

Annual SYs ranged from 29 to 308 t year?1 during the recording period and were significantly influenced by several high magnitude flood events. The mean annual SYs decreased from 153.82 t year?1 in 1964–1977, to 97.79 t year?1 in 1978–1989, and to 91.08 t year?1 in 2010–2015 due to improved soil conservation measures and increased reservoirs. At the seasonal scale, over 92% of the sediment was transported in spring and summer over the recording period. Heterogeneous sediment sources, partial areal distribution of rainfalls, and other factors led to complex suspended sediment concentration versus water discharge hysteresis loop patterns at the event and monthly scales.

Conclusions

The improved soil conservation measures and increased reservoirs over the recent decades decreased sediment availability, and the number and the magnitude of flood events from 1964 onward. However, the flood sediment fluxes in a few months were still high due to extreme precipitation events in recent years. The work can provide guidance for addressing sediment problems in this and/or other similar catchments.

  相似文献   

2.
Journal of Soils and Sediments - The sediment dynamics of (peri-)glacial catchments can be highly variable and complex. Understanding these dynamics and their underlying causes is not only of...  相似文献   

3.
For the first time in the Basque Country, turbidity (NTU), discharge (l/s) and precipitation (mm) have been continuously monitored in the gauging stations located at the outlet of three catchments (Aixola, Barrendiola and Añarbe) since October 2003. In this study, several data sets derived from flood events were used to develop turbidity and suspended sediment relationships for the three catchments separately, and so to estimate continuous suspended sediment concentration (SSC). Linear relationships are found in Barrendiola and Añarbe, and two curvilinear relationships for Aixola owing to changing sediment sources in the catchment. Several event (discharge, precipitation and suspended sediment concentration) and pre-event (discharge and precipitation) factors are calculated for all the events registered. With them correlation matrixes were developed for each catchment. Although some differences are found between catchments good correlation between precipitation (P), discharge (Q) and suspended sediment (SS) variables is found in general. Pre-event conditions are also well correlated with Q and SS variables in Barrendiola (higher regulation capacity) and Añarbe (larger area) but not in Aixola (“flash floods”). SSC-discharge evolutions through the events were also analysed. For Aixola four different types of hysteretic loops were observed: single lined, clockwise, counter-clockwise and eight-shaped; while for Barrendiola and Añarbe just clockwise loops were observed.  相似文献   

4.
The Araguás Catchment of the Central Spanish Pyrenees has been monitored since 2004 to study weathering, erosion, and the hydrological and sediment response to rainfall events in order to understand the hydromorphological dynamics of a badland area in a relatively humid environment. This small catchment (0.45 km2) shows highly active processes of physical and chemical weathering related to seasonal variations in temperature and moisture. Erosion and sediment transport are widely studied in badlands within Mediterranean environments because they represent the dominant sediment source. To obtain information about suspended sediment and discharge, a gauging station was installed within the Araguás Catchment during the summer of 2005. The aim of this work is to determine the relationships among rainfall, runoff, and suspended sediment in this badland area. Towards this goal, we analyze the relationships between suspended sediment concentration and discharge during rainfall events.From a hydrological viewpoint, the Araguás Catchment reacts to all rainfall events with torrential flow being the most characteristic hydrological response. The results obtained between October 2005 and April 2007 reveal extremely high concentrations of suspended sediment, with values frequently exceeding 100 g l<modINS>−<!--[/INS]"> 1 and reaching a maximum of 1200 g l<modINS>−<!--[/INS]"> 1. Three different types of hysteretic loops were observed: clockwise (22 events, 28%), counter-clockwise (27 events, 34%), and figure-eight (12 events, 15%). Moreover, 23% of events were classified as complex hysteretic loops and removed from the analysis due to their complexity. Clockwise hysteretic floods are characterized by their long duration and the highest hydrological and sedimentological responses; counter-clockwise hysteretic floods are characterized by their short duration and moderate hydrological and sediment responses; finally, figure-eight hysteretic floods are related to multiple peaks in suspended sediment, coinciding with oscillations in discharge associated with the highest rainfall intensities within each event and moderate hydrological and sediment responses.  相似文献   

5.
In many developing countries, the management of sediment‐related environmental problems is severely hampered by a lack of information on sediment mobilization and delivery in river basins. The sediment budget concept represents a valuable framework for assembling such information, which can, in turn, be used to assist with the design and implementation of soil erosion and sediment control policies. However, the information necessary to construct a catchment sediment budget is difficult to assemble. Against this background, an integrated approach to establishing a catchment suspended sediment budget, involving a river monitoring station, the use of 137Cs measurements to estimate soil erosion and deposition and floodplain accumulation rates within the catchment, and sediment source fingerprinting, has been developed and tested in the 63 km2 catchment of the upper Kaleya River in southern Zambia. The approach developed not only provides detailed information on individual components of the suspended sediment delivery system, but also permits the establishment of the overall catchment sediment budget. A sediment budget for the upper Kaleya catchment is presented and both its key features and its wider implications for catchment management are discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.

Purpose

Understanding hydro-sedimentary dynamics at the catchment scale requires high temporal resolution data on suspended sediments such as their origin, in addition to the common measurements of sediment concentrations and discharges. Some rapid and low-cost fingerprinting methods based on spectroscopy have recently been developed. We investigated how visible spectra could be used to predict the proportion of various source materials in suspended sediment samples, paying particular attention to the potential alteration of spectrocolorimetric signatures between soils and suspended sediments during transport.

Materials and methods

The 22-km2 Galabre catchment, France, is composed of black marls, limestones, molasses, undifferentiated deposits and gypsum. Forty-eight source materials were sampled and 328 suspended sediment samples were collected at the outlet during 23 runoff events. Measurements were taken with a diffuse reflectance spectrophotometer on dried samples. As the erosion processes are particle size selective, five particle size fractions of source material were measured in order to assess the potential alteration of the fingerprint signatures. As the biogeochemical processes occurring in the river could also affect the signatures, source materials were immersed in the river for durations ranging from 1 to 63 days and subsequently measured. Finally, partial least-squares regression models were constructed on 81 artificial laboratory mixtures to predict the proportions of source materials.

Results and discussion

The spectrocolorimetric measurements discriminated the primary source materials but not the Quaternary deposits. As the gypsum was not conservative, only the black marls, molasses and limestones were used in the fingerprinting procedure. The construction of the partial least-squares regression models led to a median absolute error of 1.1%. This error increased to 3.9% when the models were applied to source samples with: (1) different particle sizes; (2) different durations spent in the river; or (3) different origins than those used for their construction. The effect of particle size on the fingerprinting procedure was larger than the effect of biogeochemical reactions or the spatial variability of the spectrocolorimetric signatures. Half of the 23 runoff events analysed exhibited huge variations in the source proportions from one sediment sample to another.

Conclusions

The spectrocolorimetric fingerprinting approach was able to quantify routinely the proportion of primary source materials in all suspended sediment samples collected during runoff events. The high temporal resolution of the predicted proportions revealed that only analysing three or four suspended sediment samples during a runoff event could lead to a misunderstanding of the hydro-sedimentary processes for more than half of the investigated runoff events.  相似文献   

7.
In terms of erosion and elevated suspended sediment concentrations, road construction has a major impact on the environment, which is described in this paper. In the Andheri Khola catchment, Nepal, the sediment regime of a stream at different locations within the catchment suddenly changed between 1999 and 2000. The only explanation for this change was the construction of the Bardibas‐Dhulikhel highway, which was initiated in this area in January 2000 and completed in March 2000. The changes in suspended sediment concentration could be shown both visually as well as statistically at three different locations in the catchment with a catchment without any impact of the road as a control. Other possible reasons for the change could be excluded by using the available data from the catchment. The impact of the road was estimated to range from 300 to 500 per cent in terms of change in sediment yield per annum. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.

Purpose

Dominant discharges and associated sediment dynamics of the River Isábena, a 445-km2 catchment in the central Pyrenees of Spain that is punctuated by badlands, are analysed.

Materials and methods

Calculations of suspended sediment loads are based on continuous records of discharge and turbidity obtained at the basin outlet for the period 2005–2010.

Results and discussion

Dominant discharges for sediment load (i.e. effective discharge) present a bimodal distribution, with one peak falling in the range of low flows and the other associated to less frequent but higher magnitude floods (i.e. bankfull). The highly suspended sediment availability in the badlands, together with the high connectivity between the badlands and the stream network and the important in-channel fine sediment storage, causes both large and small events to remobilize fines. Baseflows, despite their low competence, generate resuspension and massive sediment loads. Thus, effective discharge (i.e. the discharge which transports most of the sediment) is not solely associated with bankfull (i.e. the discharge that dominates channel form), but to a wider range of discharges. Consequently, this river channel is not specifically adjusted to convey most of the sediment load during high floods, as in many other rivers, but instead large volumes of sediment are transferred downstream at an almost constant rate.

Conclusions

Results suggest that dominant discharge may play a lesser role in terms of (suspended) sediment load in non-supply-limited fluvial systems and/or in rivers that permanently work close to, or at, full transport capacity, as is the case of the Isábena.  相似文献   

9.
10.
Guo  Wenzhao  Xu  Xiangzhou  Zhu  Tongxin  Zhang  Hongwu  Wang  Wenlong  Liu  Yakun  Zhu  Mingdong 《Journal of Soils and Sediments》2020,20(3):1730-1741
Purpose

Gravity erosion (mass movement) generates an enormous volume of sediments on steep slopes throughout the world, yet its effect on the particle size distribution of suspended sediments (PSDSS) remains poorly understood. The objective of this study is to quantify the effects of gravity erosion on soil loss, especially the changes of particle size distribution of the suspended sediment.

Materials and methods

In this study, experiments were conducted in a field mobile laboratory in which mass movements were triggered on steep slopes under simulated rainfall. During the experiments, water-sediment samples were collected in polyethylene bottles directly from the gully and channel flows before and during the mass movements. The volumes of each mass failure during and 20 min after the rainfalls were measured by a topography meter. The particle fractions of the samples were analyzed by combining the sieving and photoelectric sedimentometer techniques. A suite of indexes such as median sediment size (d50), sediment heterogeneity (H), fractal dimension (D), and enrichment/dilution ratio (Red) were then used to evaluate the effect of mass movement on PSDSS.

Results and discussion

(1) Gravity erosion had a significant influence on PSDSS. After the mass movements occurred, the proportion of sand-sized particles was decreased from 71 to 51%, whereas the proportions of clay and silt were increased from 1 to 7% and 28 to 42%, respectively. (2) The d50, H, and D were significantly correlated with slope failures. The d50 was decreased from 0.084 to 0.051 mm, whereas the H and D were increased from 5.6 to 26.8 and from 2.60 to 2.78, respectively. This implies that mass movements make the PSDSS more nonuniform and irregular. (3) The suspended sediment tended to be enriched in the silt and clay fractions and diluted in the sand fractions after mass movements. Reds for clay, slit, and sand fractions were 13.9, 1.4, and 0.7 respectively.

Conclusions

The changes of PSDSS after mass movements reflected a combined complex effect of soil sources, erosion types, selective detachment, and deposition processes. Mass movements led to a drastic increase of sediment concentration and the enrichment of fine particles, which developed into hyperconcentrated flows.

  相似文献   

11.

Purpose

The assessment of climate change impacts on the sediment cycle is currently a primary concern for environmental policy analysts in Mediterranean areas. Nevertheless, quantitative assessment of climate change impacts is still a complex task. The aim of this study was to implement a sediment model by taking advantage of sediment proxy information provided by reservoir bottom deposits and to use it for climate change assessment in a Mediterranean catchment.

Materials and methods

The sediment model was utilised in a catchment that drains into a large reservoir. The depositional history of the reservoir was reconstructed and used for sediment sub-model implementation. The model results were compared with gauged suspended sediment data in order to verify model robustness. Then, the model was coupled with future precipitation and temperature scenarios obtained from climate models. Climatological model outputs for two emission scenarios (A2 and B2) were simulated and the results compared with a reference scenario.

Results and discussion

Model results showed a general decrease in soil moisture and water discharge. Large floods, which are responsible for the majority of sediment mobilisation, also showed a general decrease. Sediment yield showed a clear reduction under the A2 scenario but increased under the B2 scenario. The computed specific sediment yield for the control period was 6.33 Mg ha?1 year?1, while for the A2 and B2 scenarios, it was 3.62 and 7.04 Mg ha?1 year?1, respectively. Furthermore, sediment transport showed an increase in its time compression, i.e. a stronger dependence of total sediment yield from the largest event contributions.

Conclusions

This study shows a methodology for implementing a distributed sediment model by exploiting reservoir sedimentation volumes. This methodology can be applied to a wide range of catchments, given the high availability of reservoir sedimentation data. Moreover, this study showed how such a model can be used in the framework of a climate change study, providing a measure of the impact of climate change on soil erosion and sediment yields.  相似文献   

12.
The determination of relative contributions of potential sediment sources is an important step in the development of management strategies to combat soil erosion. In a 1.2 km2 gullied catchment in southeastern New South Wales, multi-parameter fingerprinting of sediment deposited in successive downstream pools has identified gully walls as the dominant sediment source when the grazed pasture surface was the only other potential source. The median fractional contributions remained relatively steady in the successive downstream pools, with the gully walls responsible for between 90% and 98% of the pool sediment. This result was achieved despite the ratio of the source areas varying considerably between successive nested subareas. Reliability bounds on the predictions, accounting for limited sampling of sources, were well constrained and varied between 5.4% and 13.8%. Downstream of an unsealed road crossing, sediment from the road source dominated the pool sediments such that contributions from the pasture surface and gully sources could not be determined.  相似文献   

13.
In response to increasing concerns about the potential toxicological impacts of (extreme) flood events, scientists from several disciplines have joined to form the interdisciplinary research project named FLOODSEARCH. FLOODSEARCH is one of the recent Pathfinder Projects supported by the German Excellence Initiative via the Exploratory Research Space at RWTH Aachen (ERS). FLOODSEARCH aims to combine methodologies of hydraulic engineering and ecotoxicology in a new interdisciplinary approach to assess the risks associated with the re-mobilisation of particulate bound contaminants often observed after severe flood events. Impacts of extreme flood events and aspects of re-mobilisation of sediment-bound toxic compounds will be characterised and evaluated in controlled experiments fusing flood simulation technologies with biological effects assessment. The overall goal is to establish a novel and more realistic approach towards flood event testing that can be applied to a number of different questions and species. Specifically, model aquatic species such as rainbow trout (Onchorhynchus mykiss) will be exposed to particle-bound contaminants in flood-like conditions in a specifically designed annular flume that permits monitoring of both physical/chemical and biological parameter. Ultimately, this approach will assist to further our understanding of the potential biological risks associated with increasingly frequent extreme flood events, e.g., as a consequence of climate change, by bridging the gap between the physical (re-)mobilisation of contaminants and resulting toxicological impacts on aquatic organisms. Thus, it is the objective of the project to derive relationships between the hydrodynamic parameters such as velocities and turbulences, the parameters associated to sediment transport such as sediment concentration and grain sizes and the biological parameters.  相似文献   

14.
《CATENA》2007,69(2-3):161-176
Temporal variability and spatial heterogeneity of surface runoff generation triggers the dynamics of source areas of sediment and sediment-associated nutrient transport. Reliable modelling of hydrological special situations i.e. snowmelt is of high importance for the quality of erosion and sediment yield modelling. Data from the research catchment Schäfertal demonstrate the individuality of snowmelt events in terms of runoff coefficient and delivery ratio. This 1.44 km2 low mountain catchment is characterised by a high portion of arable land with a winter grain/winter rape crop rotation. The integrated winter erosion and nutrient load model (IWAN) considers these dynamic aspects by coupling a hydrological model with a sediment load model. Cell size of this raster-based approach is 10 × 10 m2. Additionally, snowmelt rill erosion is simulated with a newly developed physically based model that is firstly applied on a catchment scale. A sensitivity analysis of this model system component demonstrates the plausibility of the model approach and the overall robustness of the model system IWAN. The results of the long-term hydrological modelling from 1991 to 2003 are reliable and form the basis for the simulation of six snowmelt events which were observed in the Schäfertal catchment. The estimated total runoff volumes for these events match the observations well. The modelled overland runoff coefficients vary from 0.001 to 0.72. The mean values of cell erosion, which were modelled with one set of parameters for all six events range from 0.0006 to 0.96 t ha 1. The total modelled erosion for the events with unfrozen soil and low amount of surface runoff is of a factor 50 below those with partly frozen soil. In addition to these distinctions, the major differences are caused by flow accumulation in shallow depressions in variable parts of the catchment. However, the validation of these results on the single event scale is restricted due to limited spatial data. Total simulated sediment yield at the catchment outlet was as high as 13.84 t which underestimates the observed values, with the exception of one event. Oversimplification of the modelled channel processes may be a reason. The temporal variability and spatial heterogeneity of the surface roughness parameter, which was identified to be sensitive, also causes uncertainty in the parameter estimation. Despite these findings, the model system IWAN was applied successfully on the catchment scale and the simulated results are reliable.  相似文献   

15.

Purpose  

The presented study investigated on contamination of suspended particulate matter (SPM) in rivers that was sampled long-term and with higher frequency during a flood event at the river Rhine. It was conducted to determine in vitro biological effects as well as to identify and quantify compound classes and effective contaminants. Research was part of investigation on hazards of contaminants bound to SPM to inundated sites and retention areas that are inundated during flood events.  相似文献   

16.
Temporal variability and spatial heterogeneity of surface runoff generation triggers the dynamics of source areas of sediment and sediment-associated nutrient transport. Reliable modelling of hydrological special situations i.e. snowmelt is of high importance for the quality of erosion and sediment yield modelling. Data from the research catchment Schäfertal demonstrate the individuality of snowmelt events in terms of runoff coefficient and delivery ratio. This 1.44 km2 low mountain catchment is characterised by a high portion of arable land with a winter grain/winter rape crop rotation. The integrated winter erosion and nutrient load model (IWAN) considers these dynamic aspects by coupling a hydrological model with a sediment load model. Cell size of this raster-based approach is 10 × 10 m2. Additionally, snowmelt rill erosion is simulated with a newly developed physically based model that is firstly applied on a catchment scale. A sensitivity analysis of this model system component demonstrates the plausibility of the model approach and the overall robustness of the model system IWAN. The results of the long-term hydrological modelling from 1991 to 2003 are reliable and form the basis for the simulation of six snowmelt events which were observed in the Schäfertal catchment. The estimated total runoff volumes for these events match the observations well. The modelled overland runoff coefficients vary from 0.001 to 0.72. The mean values of cell erosion, which were modelled with one set of parameters for all six events range from 0.0006 to 0.96 t ha− 1. The total modelled erosion for the events with unfrozen soil and low amount of surface runoff is of a factor 50 below those with partly frozen soil. In addition to these distinctions, the major differences are caused by flow accumulation in shallow depressions in variable parts of the catchment. However, the validation of these results on the single event scale is restricted due to limited spatial data. Total simulated sediment yield at the catchment outlet was as high as 13.84 t which underestimates the observed values, with the exception of one event. Oversimplification of the modelled channel processes may be a reason. The temporal variability and spatial heterogeneity of the surface roughness parameter, which was identified to be sensitive, also causes uncertainty in the parameter estimation. Despite these findings, the model system IWAN was applied successfully on the catchment scale and the simulated results are reliable.  相似文献   

17.
Extensive afforestation using Pinus and Eucalyptus has taken place in Calabria since the early 1960's to control expansion of calanchi and biancane. In 1978 three small catchments were established near Crotone to monitor the effect of afforestation on hydrological response and sediment yield. In 1992, rainfall simulation experiments were carried out on plots in these catchments to determine more precisely the effect of tree and ground vegetation on surface runoff and erosional response. Most experiments were carried out in a logged catchment with slopes ranging from 20 to 30° and aspects from SW to NE. Results showed complex runoff generation and sediment production, reflecting the effect of microclimate and subtle variations in vegetation on infiltration characteristics. On south-facing slopes with little ground vegetation runoff generation was rapid with runoff coefficients from 27 to 37% and peak sediment concentrations reaching 83.7 g · 1−1. On north-facing slopes with good tree cover, little grass, but continuous leaf litter, runoff coefficients reached 21%, but peak sediment concentration was only 3.6 g · 1−1, while on recently logged north-facing slopes with dense grass cover the highest runoff coefficient was only 5.5% runoff coefficient, and there was virtually no sediment production. Implications of results for forest management and soil conservation are discussed.  相似文献   

18.
Journal of Soils and Sediments - Knowledge of suspended sediment provenance in mesoscale catchments is important for applying erosion control measures and best management practices as well as for...  相似文献   

19.
坝地沉积旋回泥沙养分变化及其对小流域泥沙来源的解释   总被引:6,自引:1,他引:6  
黄土高原广泛分布的坝地沉积泥沙中赋存了大量小流域侵蚀特征及侵蚀环境变化的信息,泥沙特性的变化则是这些信息的直接体现。该文通过对比分析淤地坝沉积旋回泥沙中和坝控小流域内不同泥沙源地土壤中有机质、全氮、全磷和全钾的含量,发现小流域内土壤养分含量变异性明显大于沉积旋回泥沙中的变异性,沉积旋回泥沙养分含量与沟壁土壤中的相接近,其中与沟壁中的全氮、全磷和全钾无显著差异(p>0.05),但显著小于荒草地和坡耕地中的有机质、全氮和全磷含量(p<0.05),表明淤地坝运行期间小流域泥沙主要来源于沟壁坍塌和沟道扩展,重力侵蚀和沟蚀是主要侵蚀类型;有机质和全氮在坝地沉积旋回中呈明显阶段性变化,分析认为其反映了农村土地联产承包责任制对小流域土地利用和土壤侵蚀的影响。  相似文献   

20.
According to the yearly maximum suspended sediment concentrations (SSC) in the Yellow River and its tributaries, the rivers are divided into three types of more than 300, 20–300, and less than 20 kg/m3. The middle Yellow River basin is located in the transitional zone from subhumid to semiarid climates, and covered by a thick loess mantle. Neighboring on the desert areas to the northwest, the surface material of the Loess Plateau exhibits some marked areal differentiation in grain size and forms three zones covered by sandy loess, (typical) loess and clayey loess from northwest to southeast. Controlled by these physico-geographical conditions, the grain size of river-transported sediment shows some particular characteristics; at small water discharge or SSC, the grain size of suspended sediment abruptly decreases to a minimum with increasing water discharge or SSC. At water discharge of more than ca. 40 m3/s or at SSC of more than ca. 40 kg/m3, the grain size increases with water discharge or SSC.During the low-stage season, the relatively clear baseflow may scour the coarse bed materials, so the suspended sediment is relatively coarse. In the rainy season, rainstorm runoff washes out fine loess materials to the river, making suspended sediment fine. During relatively strong rainstorms, there often occur hyperconcentrated flows at SSC of more than 300 kg/m3. The relatively coarse grains could then remain suspended in the mixture of water and fine suspended sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号