首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
张全艳  刘晓  于建强  胡大刚  郝玉金 《园艺学报》2016,43(11):2073-2078
从‘嘎拉’苹果中克隆了一个MYB转录因子基因(序列号:MDP0000894463)。该基因包含长为729 bp完整的开放阅读框,编码243个氨基酸,预测其蛋白质分子量为26.34 kD,等电点为9.29。系统进化树分析表明,这一MYB转录因子与拟南芥AtMYB73同源序列相似性最高,因此将其命名为MdMYB73。功能域分析表明,MdMYB73蛋白含有保守的R2R3-typeMYB绑定域。荧光定量PCR分析表明,MdMYB73在苹果的各个组织均有表达,在叶片和花中表达相对较高;MdMYB73的表达明显受盐胁迫的诱导。将异位表达MdMYB73的拟南芥幼苗进行抗盐鉴定,结果表明MdMYB73负调控拟南芥盐胁迫抗性;同时,AtSOS1,AtSOS3和AtNHX1抗盐相关基因的表达水平显著降低,表明MdMYB73可能负调控SOS反应,影响拟南芥抵抗高盐胁迫过程。将MdMYB73基因遗传转化苹果愈伤组织,抗盐表型分析表明,MdMYB73过量表达也明显降低了转基因愈伤组织对盐胁迫的抗性。  相似文献   

2.
从苹果砧木垂丝海棠(Malus halliana Koehne)中克隆得到了MhMYB114-Like基因(序列号:LOC103405832).该基因包含全长为602 bp的完整开放阅读框,编码200个氨基酸,蛋白质等电点为9.38.系统进化树分析表明,MhMYB114-Like与野草莓该家族蛋白亲缘关系最近.分析Mh...  相似文献   

3.
以‘光辉’海棠(Malus spectabilis‘Guanghui’)与‘王林’苹果(Malus×domestica‘Orin’)杂交后代中分离出来的红肉苹果果实为试验材料,克隆得到1个NAC(NAM,ATAF1/2,CUC2)转录因子基因,命名为MdNAC029。该基因开放阅读框(ORF)为843 bp,编码含有280个氨基酸的蛋白。保守结构域分析显示,MdNAC029蛋白在N端包含1个保守的NAC结构域。基因表达分析显示该基因在红肉苹果果实中表达量较非红肉果实高。在‘王林’苹果愈伤组织中超表达MdNAC029,其花青苷积累显著增加,表明MdNAC029在调控花青苷积累过程中发挥重要作用。对MdMYB1启动子序列进行分析,发现其序列包含1个MdNAC029转录因子的结合位点。同时,烟草瞬时表达试验显示,MdNAC029能够激活MdMYB1基因的表达。由此推测,MdNAC029可能通过直接促进MdMYB1基因的表达,正向调节花青苷的积累。  相似文献   

4.
苹果MdMYB2基因的克隆及功能鉴定   总被引:1,自引:0,他引:1  
以‘嘎拉’苹果为材料,采用同源克隆和PCR技术分离了苹果基因MdMYB2(基因序列号:MDP0000823458)。MdMYB2的开放阅读框(ORF)长度为873 bp,编码含有290个氨基酸的蛋白,预测其蛋白质分子量为32.92 kD,等电点为4.91。系统进化树分析显示,苹果MYB2与梨MYBL2亲缘关系最近,同源性最高。组织表达分析表明,MdMYB2在苹果的各个组织均有表达,在茎和果实中表达相对较高。MdMYB2的表达明显受盐胁迫的诱导。构建了MdMYB2的表达载体,并通过农杆菌介导的遗传转化得到了转基因苹果愈伤和转基因拟南芥植株。抗性试验表明,过量表达MdMYB2明显提高了转基因苹果愈伤对盐胁迫的抗性。此外,异位表达MdMYB2也能提高拟南芥对盐胁迫的抗性,以上试验结果表明MdMYB2在植物盐胁迫响应中发挥重要作用。  相似文献   

5.
从‘嘎拉’苹果(Malus×domestica Borkh.)中克隆MdCBL3(序列号:MDP0000155124),长852 bp。系统进化树分析表明,苹果MdCBL3与白梨亲缘关系最近。利用PlantCare数据库进行启动子顺式作用元件预测分析,MdCBL3启动子序列中存在干旱、低温、光、生长素、防御等响应元件。构建MdCBL3表达载体并利用农杆菌介导法侵染苹果愈伤组织和拟南芥。半定量RT-PCR证明MdCBL3在转基因愈伤组织中过量表达,在拟南芥中得到异源表达。表型分析发现,在盐胁迫中,与野生型相比,转基因愈伤组织和拟南芥成龄苗生长更好,盐胁迫的抗性更强。在拟南芥中异源表达MdCBL3,能提高拟南芥对干旱和低温的抗性。  相似文献   

6.
柑桔愈伤组织受盐胁迫的生理变化   总被引:2,自引:0,他引:2  
柑桔是对盐极度敏感的植物,土壤中可溶性盐的存在与增加往往成为栽培柑桔的限制因子(Goell.A.1969:Greenway,H.1973;Mobayen.R.G.et al.1980)。因此,研究柑桔的耐盐性及选择耐盐品种类型,特别是砧木盐耐类型的选择研究,对于柑桔抗盐栽培具有重要意义。由于柑桔对盐的极度敏感性及珠心胚的干扰,常规育种方法培育耐盐砧木类型很难取得成功(Furr,J.P.et al.1969)。近年来,植物组织培养技术正应用于植物改良的各个方面(Malgia,P.et al.1982),利  相似文献   

7.
苹果砧木耐盐性田间鉴定   总被引:8,自引:0,他引:8  
1997~ 1998年在山东省东营市盐碱地农场分别种植 14种 1年生苹果砧木苗和 6种砧木的1年生嫁接苗 ,发现砧木珠美海棠 ( Malus  zumi)、小金海棠 ( M.xiaojinensis)耐盐性较强 ;M2 6、MM10 6、M9、八棱海棠 ( M.micromalus)耐盐性中等 ;丽江山定子 ( M.rockii)和 A2不耐盐。不同砧穗组合的耐盐能力主要取决于砧木 ,同一种砧木嫁接不同品种的耐盐性相当。轻度盐碱地育苗、覆膜铺草等栽培措施能提高苹果苗对盐胁迫适应性能力  相似文献   

8.
为了探究红肉苹果黄酮醇合成机理,分析通路相关基因,从成熟期红肉苹果中克隆了1个NAC转录因子基因Md NAC9。通过Real-TimePCR、酵母单杂交和荧光素酶报告试验,探究Md NAC9与苹果黄酮醇积累的相关性。结果表明,在苹果果实和过表达Md NAC9的愈伤组织(OENAC9)中Md NAC9表达量变化与黄酮醇合成相关基因Md FLS表达量变化趋势一致。酵母单杂交试验证明,Md NAC9具有转录激活功能,能够特异结合Md FLS基因启动子。荧光素酶报告试验显示,Md NAC9对Md FLS的启动子有激活作用,促进Md FLS的表达。Md NAC9可能通过激活Md FLS促进苹果黄酮醇积累。  相似文献   

9.
在NaCl不同浓度(0~1.5%)的MS的培养基上诱导番茄愈伤组织。结果表明,番茄愈伤组织和芽分化在NaCl浓度0~0.5%范围内生长正常,在0.75%~1.00%范围内能够生长,大于1.25%时受到强烈抑制;随着NaCl浓度的提高,愈伤组织中K+、Mg2+、Ca2+含量逐渐减少,Na+含量显著增加;叶绿素含量呈线性下降,而游离脯氨酸含量增加。  相似文献   

10.
【目的】分离克隆苹果MdRCD1基因,分析其蛋白结构和逆境响应,并初步鉴定MdRCD1在苹果愈伤中的功能。【方法】同源克隆MdRCD1并测序,用DNAman和MEGA5相关软件分析MdRCD1氨基酸序列以及进化关系,不同逆境处理‘嘎拉’苹果组培苗,qRT-PCR分析MdRCD1在逆境条件下的表达量。农杆菌介导的遗传转化方法获得过量表达MdRCD1的转基因愈伤,不同盐浓度处理野生型和转基因愈伤,观察愈伤的长势,检测愈伤的鲜质量、脯氨酸和丙二醛含量,鉴定MdRCD1的初步功能。【结果】从‘嘎拉’苹果中克隆了MdRCD1(MDP0000234325)基因。该基因ORF为1 803 bp。通过进化树和蛋白同源性分析,表明苹果MdRCD1和中国白梨PbRCD1进化亲缘关系最近。在MdRCD1的N端有1个保守的WWE结构域,1个PARP催化中心,在C端有1个RST结构域。qRT-PCR实验表明MdRCD1在苹果各个组织器官中都有表达,在茎中的表达量高于其他组织;同时MdRCD1的表达受Na Cl、ABA、渗透胁迫等逆境胁迫的诱导。通过农杆菌侵染获得过量表达MdRCD1转基因苹果愈伤。盐胁迫处理条件下,过量表达MdRCD1的抗性明显提高。【结论】MdRCD1在进化过程中比较保守,苹果不同组织中都有表达,过量表达MdRCD1苹果愈伤的抗盐性得到提高。  相似文献   

11.
以苹果‘嘎拉’(Malus × domestic‘Royal Gala’)为试材,分离了乙烯信号转导相关的MdEIL1基因(基因序列号:MDP0000423881)。序列分析表明,该基因包含长为1 980 bp完整的开放阅读框,编码658个氨基酸的蛋白。进化树分析表明MdEIL1属于EIN3/EIL转录因子家族蛋白。定量分析显示,MdEIL1基因在苹果的根、茎、叶、花和果实中有不同程度的表达,而且它的表达也受到乙烯、生长素和细胞分裂素的诱导。通过原核表达试验体外诱导MdEIL1蛋白成功,为后续蛋白功能鉴定奠定了基础。MdEIL1基因在拟南芥中异位表达,增强其乙烯响应,在暗处表现为下胚轴变短,并且AtERF1的表达量上升,显示转基因植株对乙烯的敏感性提高。  相似文献   

12.
以华东葡萄‘白河-35-1’为试材,依据葡萄全基因组数据库(http://www.genoscope.cns.fr),利用同源序列比对结果设计引物,克隆获得VpSBP12基因的DNA和cDNA序列,并分析其序列特征和表达特性,以期阐明其在葡萄抗盐胁迫中的作用,为葡萄抗逆育种提供参考依据。结果表明:VpSBP12基因DNA全长2 907bp,其中含有3个外显子和2个内含子;该基因的完整开放阅读框序列全长1 137bp,编码379个氨基酸,其中包括一个含有双向核定位信号的高度保守SBP结构域。经过亚细胞定位和转录活性分析表明,该基因可以定位到核里,且具有转录激活活性。构建过量表达载体将VpSBP12转化拟南芥后发现,转基因株系在盐胁迫培养基上的萌发率及根长显著高于野生对照。表明VpSBP12基因在拟南芥中的过量表达提高了植株的抗盐胁迫的能力。  相似文献   

13.
以‘嘎拉’苹果为材料,采用同源克隆和PCR技术分离了苹果细胞分裂素O–糖基转移酶基因MdZOG1。MdZOG1的开放阅读框(ORF)长度为762bp,编码含有253个氨基酸的蛋白。系统进化树分析显示,MdZOG1与PbZOG1亲缘关系最近。基因表达分析显示MdZOG1主要在苹果根和茎中表达,在花和果实中的表达量较低。通过农杆菌介导的遗传转化获得转MdZOG1拟南芥和烟草。干旱处理试验结果显示:超量表达MdZOG1显著提高拟南芥和烟草植株的抗旱能力,表明苹果细胞分裂素O–糖基转移酶在植物抗旱胁迫中发挥重要作用。  相似文献   

14.
‘寒富’苹果与其同源四倍体耐盐差异研究   总被引:2,自引:0,他引:2  
薛浩  张锋  张志宏  傅俊范  王丰  张兵  马跃 《园艺学报》2015,42(5):826-832
以含有200 mmol·L-1 NaCl的1/2 Hoagland营养液处理‘寒富’二倍体苹果及其同源四倍体幼苗8 d,分别在处理0、2、4、6和8 d时进行叶片相关生理指标及水通道蛋白相关基因表达水平的测定,比较分析两者的耐盐性差异。结果表明:盐胁迫下四倍体的形态表现优于二倍体;四倍体和二倍体的叶片相对含水量一直在下降,二倍体下降幅度大于四倍体,丙二醛含量和脯氨酸的积累随胁迫时间的延长而增加,二倍体含量始终高于四倍体;NaCl处理8 d时,二倍体的叶片相对含水量比四倍体低8%,丙二醛含量比四倍体多4.466 nmol·g-1FW,脯氨酸含量为四倍体的1.18倍;盐胁迫下两者叶片中水通道相关蛋白基因Md PIP1;1、Md PIP2;1、Md TIP1;1和Md TIP2;1的表达量均出现先下降后上升趋势,且四倍体均高于二倍体,尤其在处理24 h时差异最显著。四倍体比二倍体具有更强的耐盐性,可能与盐胁迫下四倍体相关水通道蛋白基因表达水平较高有关。  相似文献   

15.
苹果U-box型E3泛素连接酶MdPUB24的耐盐性和ABA敏感性鉴定   总被引:2,自引:0,他引:2  
从‘皇家嘎拉’苹果(Malus×domestica Borkh.)中克隆了一个E3泛素连接酶基因(序列号:MDP0000199588)。基因序列测序发现,该基因包含长为1 212 bp完整的开放阅读框,编码404个氨基酸。系统进化树分析表明,这一E3泛素连接酶与拟南芥At PUB24同源序列相似性最高,因此将其命名为MdPUB24。利用Plant Care数据库进行启动子顺式作用元件预测分析表明,MdPUB24启动子序列中含有与脱落酸、光、茉莉酸及干旱信号相关的顺式作用元件。荧光定量PCR分析表明,MdPUB24在‘皇家嘎拉’苹果的不同组织中均有表达,且在叶片中最高;外源ABA、NaCl和低温胁迫处理能够抑制‘皇家嘎拉’苹果组培苗中MdPUB24的表达。MdPUB24过量表达的‘王林’苹果愈伤组织和异位表达的拟南芥幼苗在盐胁迫条件下,生长势与野生型相比明显变弱,表明MdPUB24负调控盐胁迫。相反,在外源ABA处理条件下,MdPUB24过量表达苹果愈伤和异位表达拟南芥与对照相比,生长势明显增强,表明MdPUB24对ABA不敏感。  相似文献   

16.
采用同源克隆和PCR技术从‘嘎拉’苹果(Malus×domestica Borkh.)中克隆细胞分裂素氧化酶基因MdCKX7.2(基因序列号:MDP0000279125)。该基因含有1 542 bp的完整开放阅读框,编码513个氨基酸。利用Plant CARE数据库对MdCKX7.2启动子顺式作用元件进行预测分析,发现MdCKX7.2启动子序列中存在光、干旱、脱落酸、水杨酸、茉莉酸甲酯等响应元件。基因表达分析发现,‘嘎拉’幼苗中MdCKX7.2的表达明显受干旱和ABA的诱导。通过农杆菌介导的遗传转化获得MdCKX7.2转基因拟南芥植株。抗性试验表明,异位表达MdCKX7.2基因明显提高了拟南芥对干旱胁迫的抗性。拟南芥种子萌发试验表明,在拟南芥中异位表达MdCKX7.2提高了植株对ABA的敏感性,种子萌发率和幼苗鲜质量明显下降,与种子萌发相关基因的表达量明显上调。以上试验结果表明,MdCKX7.2在植物非生物胁迫响应中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号