首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Processive chromosomal replication relies on sliding DNA clamps, which are loaded onto DNA by pentameric clamp loader complexes belonging to the AAA+ family of adenosine triphosphatases (ATPases). We present structures for the ATP-bound state of the clamp loader complex from bacteriophage T4, bound to an open clamp and primer-template DNA. The clamp loader traps a spiral conformation of the open clamp so that both the loader and the clamp match the helical symmetry of DNA. One structure reveals that ATP has been hydrolyzed in one subunit and suggests that clamp closure and ejection of the loader involves disruption of the ATP-dependent match in symmetry. The structures explain how synergy among the loader, the clamp, and DNA can trigger ATP hydrolysis and release of the closed clamp on DNA.  相似文献   

10.
11.
12.
Uninterrupted MCM2-7 function required for DNA replication fork progression   总被引:1,自引:0,他引:1  
Little is known about the DNA helicases required for the elongation phase of eukaryotic chromosome replication. Minichromosome maintenance (MCM) protein complexes have DNA helicase activity but have only been functionally implicated in initiating DNA replication. Using an improved method for constructing conditional degron mutants, we show that depletion of MCMs after initiation irreversibly blocks the progression of replication forks in Saccharomyces cerevisiae. Like the Escherichia coli dnaB and SV40 T antigen helicases, therefore, the MCM complex is loaded at origins before initiation and is essential for elongation. Restricting MCM loading to the G(1) phase ensures that initiation and elongation occur just once per cell cycle.  相似文献   

13.
14.
15.
Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape.  相似文献   

16.
17.
18.
The structure of a T7 RNA polymerase (T7 RNAP) initiation complex captured transcribing a trinucleotide of RNA from a 17-base pair promoter DNA containing a 5-nucleotide single-strand template extension was determined at a resolution of 2.4 angstroms. Binding of the upstream duplex portion of the promoter occurs in the same manner as that in the open promoter complex, but the single-stranded template is repositioned to place the +4 base at the catalytic active site. Thus, synthesis of RNA in the initiation phase leads to accumulation or "scrunching" of the template in the enclosed active site pocket of T7 RNAP. Only three base pairs of heteroduplex are formed before the RNA peels off the template.  相似文献   

19.
Developmental regulation of two 5S ribosomal RNA genes   总被引:36,自引:0,他引:36  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号