首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】针对在复杂环境背景中难以识别分割多只肉鸡的问题,探讨基于深度学习实现对多只肉鸡深度图像分割的方法。【方法】利用深度相机,通过不同的拍摄角度(俯视、正视、侧视)在自然环境下采集肉鸡不同姿势(站立、俯卧、抬头、低头等)形态的深度图像,并使用CVAT标注软件对深度图像进行精确标注,建立肉鸡深度图数据集(含4 058张深度图像)。利用FCN、U-Net、PSPNet、DeepLab和Mask R-CNN等5种神经网络实现肉鸡深度图像的识别与分割,根据测试集得到预测结果,比较与评估不同模型的性能,实现对肉鸡深度图像的识别与分割。【结果】基于Mask R-CNN神经网络模型的识别分割准确率为98.96%,召回率为97.78%,调和平均数为95.03%,交并比为94.69%,4个指标值均为5个模型中的最优值。【结论】基于Mask R-CNN神经网络的算法简单快速,且能准确实现肉鸡的自动识别与分割,对肉鸡遮挡有较佳的鲁棒性,基本可以满足养殖场鸡群均匀度预测的识别分割要求。促进了计算机视觉在现代农业的应用,可为鸡群计数、鸡群均匀度预测以及肉鸡福利饲养等鸡场作业提供理论和实践基础。  相似文献   

2.
【目的】借助多光谱遥感影像和Logistic算法,实现对棉田虫害的田间监测。【方法】以患虫害棉花区域为研究对象,利用无人机获取棉田多光谱遥感影像,并对影像进行预处理;结合受虫害棉花光谱特征,利用虫害敏感波段反射率与植被指数构建Logistic回归模型,开展棉花虫害识别监测研究。【结果】由土壤调节植被指数(Soil adjusted vegetation index,SAVI)模型和归一化植被指数(Normalized vegetation index,NDVI)模型构建的棉蚜虫、棉红蜘蛛、棉铃虫识别模型为最优模型,其训练样本准确率达到93.7%,测试样本准确率达到90.5%,召回率为96.6%,F1值为93.5%,对棉蚜虫、棉红蜘蛛和棉铃虫的识别模型决定系数分别为0.942、0.851和0.663。【结论】该模型可满足棉田中棉蚜虫、棉红蜘蛛和棉铃虫3种虫害的发生区域识别,且可基本满足棉田精准植保作业相关要求。  相似文献   

3.
【目的】针对果园多种苹果树皮病害实时检测的需求,设计基于 Android 的苹果树皮病害识别 APP 以便进行果园精准管理。【方法】通过网络查找和实地拍摄收集轮纹病、腐烂病、干腐病 3 种病害的图片 数据,经扩增和标注后按照 8 ∶ 2 比例进行训练集和测试集的划分。使用 YOLOv5s 算法训练苹果树皮病害识别 网络模型,对训练得到的轻量级网络模型进行 Android 端部署,并设计相应 APP 界面,实现对轮纹病、腐烂病、 干腐病的快速诊断。【结果】训练后得到的深度学习网络模型识别效果良好,准确率稳定在 88.7%,召回率稳 定在 85.8%,平均精度值稳定在 87.2%。其中腐烂病准确率为 93.5%,干腐病准确率为 88.2%,轮纹病准确率为 84.3%。将其在 Android 端部署后,每张病害图片处理时间均小于 1 s,检测置信度为 87.954%。该轻量级识别系 统不仅实现了 3 种病害的快速检测,也保证了较高的识别精度。【结论】YOLOv5s 网络权重模型小,能够轻松 实现 Android 端的部署,且基于 YOLOv5s 设计的 APP 操作简单、检测精度高、识别速度快,可以有效辅助果园 精准管理。  相似文献   

4.
【目的】研究基于改进Mask R-CNN的玉米苗冠层分割算法,满足精准作业中对靶施肥的识别要求,提高化肥的使用效率,减少环境污染。【方法】采集田间玉米苗图片并增强数据,生成田间数据集;使用ResNeXt50/101-FPN作为特征提取网络对分割算法进行训练,并与原始ResNet50/101-FPN的训练精度结果作对比;采用不同光照强度及有伴生杂草的玉米苗图片对比验证冠层识别算法效果。【结果】在不同光照强度下,无伴生杂草的目标平均识别精度高于95.5%,分割精度达98.1%;在有伴生杂草与玉米苗有交叉重合情况下,目标平均识别精度高于94.7%,分割精度达97.9%。检测一帧图像的平均时间为0.11 s。【结论】Mask R-CNN的玉米苗及株芯检测算法有更高的准确率和分割精度,更能适应不同光照强度及有伴生杂草的苗草交叉重合情况的目标检测。  相似文献   

5.
农田杂草是影响农作物生长的主要因素之一,农田杂草的有效防治与农作物产量息息相关.复杂田间环境下,精准识别玉米秧苗与农田杂草能够指导除草装备作业更加经济和高效.为提高农田目标识别精度和效率,文章基于深度学习技术的目标检测方法,首先使用多苗期、多时段和单一拍摄角度的图像采集方式并配合数据增强方法制作一个特征丰富的数据集.通...  相似文献   

6.
【目的】研究一种基于卷积神经网络的危害棉叶症状识别技术,提高棉花病虫害的识别准确率。【方法】基于caffe深度学习框架,在CaffeNet网络结构基础上增加一层全连接层(记为CaffeNet+1),并结合迁移学习方法对网络进行训练。采集健康、红叶茎枯、红蜘蛛、枯萎、黄萎、双斑萤叶甲、蚜虫、褐斑棉叶图像各975张作为样本集。随机选取验本集中80%的图像样本作为训练集,剩余20%作为测试集。【结果】迁移学习方式下学习率取0.005时的CaffeNet+1模型最优,在测试集上其识别准确率可达98.9%。【结论】在与全新学习模式下的CaffeNet模型相比,该方法可加速网络模型收敛,且具有更高的识别准确率,该技术方法在准确识别田间病虫害棉叶后表现症状的图像写出来具体方面具有重要的应用价值。  相似文献   

7.
【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构的识别性能,并用类激活图生成技术度量模型的可靠性。在番茄叶部病害数据集上验证方法的有效性。【结果】应用数据增广技术后,模型在简单背景样本上的识别准确率提高了1.0%,在复杂背景样本上提高了12.5%;聚焦损失使模型的准确率提高了0.1%;该模型的识别准确率为99.8%,对各类病害的召回率在97.3%以上;应用类激活图技术生成的显著性图可有效标识模型在识别过程中的重点关注区域。【结论】该方法能够有效解决病害图像样本非均衡问题,提高了病害识别模型的泛化性能,同时类激活图可以用于分析模型的可靠性,从而为番茄叶部病害防治提供参考。  相似文献   

8.
【目的】针对作物害虫数据集样本较少、现有单一模型在作物害虫识别上的准确率不高以及泛化能力较差的问题,提出一种基于迁移学习与多模型集成的害虫识别模型。【方法】在大规模公开作物害虫数据集IP102上进行试验,使用迁移学习单独训练6个深层神经网络,选择识别性能较好的EfficientNet、Vision Transformer、Swin Transformer和ConvNeXt进行组合,采用不同策略集成预测结果。【结果】提出的基于迁移学习与多模型集成方法的识别准确率达到75.75%,比性能最好的单模型ConvNeXt提高了1.34%,与目前该数据集上最优算法(CA-EfficientNet)的性能相比,识别准确率高出了6.3%。【结论】害虫图像智能识别模型具有较好的稳定性与泛化能力。  相似文献   

9.
【目的】针对板式家具零件表面缺陷人工检测过程存在的检测效率低、准确率低、检测结果无法数字化存储等问题,提出了一种基于图像分割和深度学习算法的饰面人造板表面缺陷的检测方法。【方法】利用工业相机采集人造板图像,构建缺陷数据集,采用全局阈值和局部动态阈值算法分割表面缺陷与图像截取,通过将ReLU6非线性激活函数替代ReLU函数,并引入倒残差结构的方法,优化MobileNetv 2深度学习网络,进行缺陷识别与分类。【结果】该方法对饰面人造板表面崩边和划痕缺陷的检测精确率分别达到了93.1%和97.5%,召回率分别为95.3%和97.6%,单张板件平均检测用时为163 ms。【结论】本研究提出的方法具有较高精度与稳定性,可解决传统人工检测方法的准确率低、效率低等问题,为家具板材表面缺陷的自动化检测提供新思路。图6表3参21  相似文献   

10.
【目的】为提高脐橙采摘机器人在自然环境下对脐橙果实进行识别定位的精度,提出采用深度学习结合快速导向滤波方法识别自然环境下脐橙果实。【方法】以赣南脐橙为对象,改进导向滤波方法,去除自然环境下脐橙图像的光照等噪声信息,突出图像颜色和纹理特征。采用带有残差模块的Darknet-53作为特征提取网络,将多尺度融合的3尺度检测网络减少为2尺度检测网络,引入GIoU边界损失函数代替原损失函数,并使用DBSCAN+Kmeans聚类算法,对训练数据集聚类分析,优化预测分支的先验框尺寸,通过迁移学习训练方法建立脐橙果实识别模型,设计单果、向光、背光、果实重叠、枝叶遮挡5组测试集的对比实验,并与其他几种识别模型性能进行比较。【结果】快速导向滤波方法能很好地去除脐橙图像在自然环境下光照及边缘模糊等噪音信息。当优化2个预测分支先验框尺寸时,改进后模型在5种环境下综合性能都优于其他网络,尤其在真实种植环境下识别准确率达到了91.22%,召回率为97.30%,F1平均值为94.16%,识别速率约为26.48 fps。【结论】使用快速导向滤波结合深度学习方法建立的脐橙果实识别模型对自然环境下脐橙果实的识别具有较高的...  相似文献   

11.
【目的】马铃薯薯皮粗糙度分级研究可以提供块茎外观品质性状无损检测方法,为客观评价品质质量和高通量筛选品种提供理论和实践基础。【方法】以79份马铃薯品种(系)为供试材料,利用相机采集有/无芽眼的薯皮图像。基于MATLAB R2016a软件对薯皮图像预处理,随机选择8份材料用相关函数指标比较图像灰度化、增强及去噪效果。利用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取图像特征参数角二阶矩(angular second moment,ASM)、熵(entropy,ENT)、对比度(contrast,CON)和相关度(correlation,COR),并确定矩阵最适像素距离(d)。比较两类薯皮图像特征参数间的差异,选择差异较小的薯皮图像特征集进行统计分析和分类识别。构建支持向量机(support vector machines,SVM)和BP神经网络(backpropagation neural network,BPNN)模型对薯皮粗糙度分级分类,模型分级精度评价指标为准确率、精准率、召回率及调和平均数。【结果】加权平均值法进行灰度处理后的薯皮图像...  相似文献   

12.
【目的】为测定温室中番茄不同成熟阶段的果实数量,提出一种基于彩色点云图像的测定方法。【方法】在移动平台上搭载KinectV2.0采集温室中行栽番茄的图像信息合成番茄植株点云,再将二视角的番茄植株点云合成1个点云,并通过深度信息截取得到近处番茄植株点云,将标注的点云数据输入到PointRCNN目标检测网络训练预测模型,并识别番茄植株点云中的番茄果实,最后利用基于特征矩阵训练的支持向量机(Support vector machine, SVM)分类器对已经识别出来的果实进行成熟阶段分类,获得不同成熟阶段番茄果实的数量。【结果】基于PointRCNN目标检测网络的方法识别番茄果实数量的精确率为86.19%,召回率为83.39%;基于特征矩阵训练的SVM分类器,针对番茄果实成熟阶段的预测结果在训练集上准确率为94.27%,测试集上准确率为96.09%。【结论】基于彩色点云图像的测定方法能够较为准确地识别不同成熟阶段的番茄果实,可以为评估温室番茄产量提供数据支撑。  相似文献   

13.
【目的】通过调节训练集内实验室场景图片与田间场景图片的分布,提高深度学习模型的准确度, 以减少植物病害识别深度学习模型对田间场景数据的依赖。【方法】通过调节训练集内实验室场景图片和田间 场景图片的分布,使用 ResNeSt-50、VGG-16、ResNet-50 等 3 种神经网络结构分别对训练得到的深度学习模型 进行测试和比较,从而优化植物病害识别模型。【结果】在由一定数量的植物病害图像组成的训练集内,调节 其中不同场景图片的分布会对模型的准确率产生影响。当训练集内的田间场景图片分布达 30% 时,模型准确率 提升 18% 以上。在 100% 实验室场景图片的训练集内添加 30% 田间场景图片,可提升模型准确率 17% 以上;在 100% 田间场景图片的训练集内添加实验室场景图片,模型准确率随图片数量增加而提升,提升幅度为 2%~4%。 【结论】该方法适用于农业复杂环境下高准确度病害识别模型的快速建立,可减少深度学习模型对田间场景数 据的依赖,缩短模型建立初期的田间数据采集周期,降低田间数据采集成本,促进人工智能技术在无人农场及 智慧农业中更有效地运用。  相似文献   

14.
【目的】提出了一种改进的YOLOv4模型,为自然环境下3种常见茶叶病害(茶白星病、茶云纹叶枯病和茶轮斑病)的快速精准识别提供支持。【方法】使用MobileNetv2和深度可分离卷积来降低YOLOv4模型的参数量,并引入卷积注意力模块对YOLOv4模型进行识别精度改进。采用平均精度、平均精度均值、图像检测速度和模型大小作为模型性能评价指标,在相同的茶叶病害数据集和试验平台中,对改进YOLOv4模型与原始YOLOv4模型、其他目标检测模型(YOLOv3、SSD和Faster R CNN)的病害识别效果进行对比试验。【结果】与原始YOLOv4模型相比,改进YOLOv4模型的大小减少了83.2%,对茶白星病、茶云纹叶枯病和茶轮斑病识别的平均精度分别提高了6.2%,1.7%和1.6%,平均精度均值达到93.85%,图像检测速度为26.6帧/s。与YOLOv3、SSD和Faster R-CNN模型相比,改进YOLOv4模型的平均精度均值分别提高了6.0%,13.7%和3.4%,图像检测速度分别提高了5.5,7.3和11.7帧/s。【结论】对YOLOv4模型所使用的改进方法具备有效性,所提出的改进YOLOv4模型可以实现对自然环境下3种常见茶叶病害的快速精准识别。  相似文献   

15.
为了提高马陆葡萄病虫害的识别准确率,有效地进行马陆葡萄病虫害防控,对测地线活动轮廓模型(GAC)进行改进,通过引入动态系数函数将马陆葡萄病虫害图像边界区域与非边界区域进行精确划分,从而实现准确分割病虫害图像模糊和凹陷边界,提出并建立了精确分割测地线活动轮廓模型(ASGAC)。接下来为了克服复杂背景下训练样本不足造成的误差,提出了Core损失函数,建立了CoreSoftmax联合监督机制(CSJMM),从而确立了基于CSJMM的精确分割测地线活动轮廓模型(CSJMM-ASGAC)。结果表明,CSJMM-AS-GAC训练集初始准确率为65.46%,验证集准确率为95.67%,测试集准确率为93.95%,Kappa系数达到0.913 8,召回率达到89.21%,CSJMM-AS-GAC对于马陆葡萄病虫害识别准确率达到94.06%。CSJMM-AS-GAC的整体性能、识别准确率、召回率等指标都优于常用的病虫害识别模型。  相似文献   

16.
【目的】为降低原木检尺作业中人为因素对检尺结果的影响,提升工作效率,提出一种基于掩膜区域实例分割模型和边缘拟合算法的原木径检尺方法。【方法】使用单目手机作为采集设备,针对3种不同尺径等级的桉树原木和矩形标尺作为研究对象。首先在不同距离下采集图像制作数据集,以8∶1∶1比例划分训练集、验证集和测试集,建立原木端面识别实验数据集。其次利用实例分割模型提取端面部分生成掩膜,使用边缘拟合算法求得矩形标尺和原木端面像素长度,结合标尺实际大小求得原木端面实际尺径。比较算法测量误差及不同国家标准下材积计算误差,评估该方法的准确性。【结果】本实例分割模型能够准确地实现原木端面掩膜分割,达到99.89%的精准率与99.41%的召回率,F1分数与均值平均精度相较one-stage算法有明显提升。通过最小二乘边缘拟合算法拟合端面为椭圆,求得椭圆短径作为原木尺径,对比真值,平均百分比误差约为-2.00%,较真实值偏小。对比不同尺径等级原木误差,100%小尺径原木、98%中尺径原木和95%大尺径原木的计算值误差范围为-5%~5%。对比不同距离下采集的原木端面图像,在50~100 cm以内采集图像效果最佳,平均相...  相似文献   

17.
【目的】通过无人机获取荔枝冠层的遥感图像,评估每棵荔枝的开花率,以期为后续荔枝花期疏花保果、精准施肥施药提供决策依据。【方法】以遥感图像为研究对象,利用实例分割的方法分割每棵荔枝冠层后,结合园艺专家的综合判断,按开花率为0、10%~20%、50%~60%、80%及以上将开花率分为4类,使用ResNet、ResNeXt、ShuffleNetv2进行开花率分类比较,试验过程中发现ShuffleNetv2在识别准确率、参数量、训练和验证时间都有很大优势;在ShuffleNetv2上引入了空间注意力模块(Spatial attention module,SAM)后,增加了模型对位置信息的学习,在不显著增加参数量的情况下,提升荔枝冠层花期分类的精度。【结果】通过对多个主流深度神经网络的比较分析,ResNet50、ResNeXt50、ShuffleNetv2的分类精度分别达到85.96%、87.01%和86.84%,而改进后的ShuffleNetv2分类精度更高,达到88.60%;ResNet50、ResNeXt50、ShuffleNetv2和改进后的ShuffleNetv2对测试集单张冠层图像验...  相似文献   

18.
【目的】为了提高作物和杂草的识别准确率和实时性,以苗期甜菜田间彩色图像为研究对象,提出了基于深度可分离卷积的实时农业图像逐像素分类方法。【方法】本研究使用由农业机器人采集的苗期甜菜田间彩色图像,通过人工逐像素标注方法将彩色图像中各个像素点标注为作物、杂草、土壤3个类别,并将单一类别的标注信息分别置于3个不同的图像通道,构成用于训练和测试的数据集。首先,建立以编码器-解码器为基础的深度可分离卷积神经网络模型,将编码器部分和解码器部分进行多尺度合并,由编码器部分决定像素位置,解码器部分获得像素分类;然后,为了解决分类类别覆盖率不平衡的问题,通过单通道标注信息训练,提高了低覆盖率分类类别的准确率,再将多个训练结果输出,实现对图像中的土壤、杂草、作物的识别;为了控制网络参数规模,采用宽度乘数控制点卷积核的个数,同时在不同分辨率输入条件下对网络模型进一步测试,以讨论网络模型的实时性。最后,使用随机数据增强技术扩充数据集,数据集中的80%用于网络参数的训练,20%用于测试网络性能。【结果】(1)通过与已有逐像素分类方法比较,本文方法获得较高的分类准确率。其中,SegNet方法逐像素分类的平均准确率为90.06%,U-Net方法平均准确率为92.06%,三通道标记训练的本文网络平均准确率为92.70%,单通道标记训练的本文网络平均准确率达94.99%。(2)通过计算不同方法单一类别逐像素分类的各项指标,论证了本文提出的单通道标注信息训练方法在处理分类类别覆盖率不平衡和训练样本较少情况下的优势。对杂草逐像素分类的准确率,SegNet方法为18.39%,U-Net方法为18.33%,三通道标记训练的本文网络为22.87%,单通道标记训练的本文网络准确率达41.94%。(3)通过宽度乘数可以有效控制网络模型的参数规模,当宽度乘数为1时,参数尺寸为676.8万,当宽度乘数为0.1时,参数尺寸降低到7.72万,是原始网络参数规模的1.14%,对土壤、杂草、作物的逐像素分类准确率分别仅降低2.81%、2.78%、3.7%,按照识别精度需求参数规模还可以进一步减小。(4)在输入分辨率和宽度乘数的共同作用下,讨论了网络的实时处理能力。采用GPU硬件加速对3个类别同时识别的速率可达20 fps,对单一类别识别速率达60 fps。可满足农业除草系统和作物监测系统实时在线运行。【结论】本文所提出的基于深度可分离卷积的逐像素分类方法,能对农业图像中的土壤、杂草、作物实施有效逐像素分类,同时该方法能对单一类别逐像素分类进行实时处理,满足实际系统的应用需求。  相似文献   

19.
智能除草装备苗草模式识别方法研究   总被引:4,自引:0,他引:4  
精准苗草识别是靶向施药除草装备作业基础。为提高识别算法精度及效率,解决光照变化对识别图像分割精度影响,文章优化研究分割算法,引入加权系数,提高算法光照适应性;根据作物线性分布生长特点,采用烟花智能群体算法,对垄间杂草与作物识别与定位;田间图像采集与试验结果表明,加权分割方法可有效解决光照变化对分割效果影响,实际作物与垄间杂草识别率为98.7%和89.5%,满足苗草识别与导航要求,对导航技术与智能除草装备发展具有重要意义。  相似文献   

20.
【目的】农作物生长过程中,作物产量会受到各种病害影响,实现自动精准地识别农作物病害以及病害程度的测定是农作物病害防治的关键。【方法】文章设计了一种基于卷积神经网络的农作物病害的识别方法并建立了农作物病害识别模型,模型利用10种作物中常见的59种病害类型的叶片图像数据集进行训练,并对模型的训练过程和训练结果进行评估。【结果】(1)农作物病害识别模型对59种病害类型的总识别精度达到0.83,部分类别的识别率高于0.9;(2)当训练的迭代次数增加到50轮以上时,农作物病害识别模型的性能不再提升,此时数据集图像的数量对模型性能的影响较大。【结论】实验证明,利用卷积神经网络进行农作物病害识别具有较高的可行性和准确性,为农作物病害的防治打下基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号