首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasive small cypress bark beetle, Phloeosinus aubei (Coleoptera, Curculionidae, Scolytinae) has two flights in Central-Europe, however, it was unclear, whether this corresponds to two reproductive periods, when nuptial chambers are formed and galleries initiated. The aim of this study was to clarify the life-cycle of P. aubei in Hungary, representing populations in the range of invasion, and to compare preferences towards some popular cultivars of Thuja and Juniper ornamental trees. In order to reveal which is the pioneering gender, and to confirm females’ preferences between healthy and broken trunks behavioral tests were conducted. Results showed that adults prepare hibernation tunnels from August until October. Sex ratio of overwintering adults was nearly equal. The significantly highest number of hibernation tunnels was found on Thuja plicata Atrovirens (mean±S.E.: 6.0±0.7/tree), followed by T. occidentalis Smaragd (2.2±0.8), Juniperus chinensis Spartan (1.6±0.6), and J. scopulorum Blue Arrow (0.2±0.2). Nuptial chambers were made from April until June, by singly females, never by males. Females chose broken, drying trunks over healthy ones. Adults of the next generation emerged from the galleries from August until October. By October adults emerged from 94% of the galleries, and larvae were found only in 6% of the galleries. These results showed that the autumn flight of P. aubei is linked to making hibernation tunnels, while the spring flight to producing nuptial chambers. The latter corresponds to a single reproductive period per year. Control measures against adults should be timed to these two specific periods of the season.  相似文献   

2.
By transversely cutting infected avocado plant stems and using PCR techniques on avocado leaves, two experiments were carried out to determine whether Rosellinia necatrix can invade avocado vascular tissues. We were unable to detect the pathogen in either stems or leaves in either experiment, so we concluded that R. necatrix does not invade the vascular system of the plant. Additionally, the toxins produced by the pathogen were also studied to determine whether such toxins could contribute to the wilting and death of avocado plants infected by R. necatrix, having an effect on avocado leaves, where they can hinder the photosynthetic process. First, we isolated and identified the toxins cytochalasin E and rosnecatrone from filtrates of six R. necatrix isolates. Second, we tried to detect cytochalasin E in sap and leaves from infected avocado plants, and it was not detected at the minimum level of 50 μg/kg in leaves or 25 μg/kg on sap. Finally, we observed changes in fluorescence emitted by the avocado leaf surface (to detect photosynthetic efficiency) after inoculating avocado plants with this toxin. Fluorescence was higher in the leaves of plants immersed in toxin solution after 4 and 8 days, but not after longer periods of time. In this work, we demonstrated that although R. necatrix is not a fungus that invades the vascular system, its toxins are probably involved in the wilting and death of infected avocado plants, decreasing the efficiency of photosynthesis.  相似文献   

3.
Laurel wilt is caused by Raffaelea lauricola, a nutritional symbiont of an Asian ambrosia beetle, Xyleborus glabratus. American members of the Lauraceae plant family are most susceptible and 300 million trees have been killed by the disease in the southeastern USA since 2003. Recently, commercial production of an important crop in the laurel family, avocado (Persea americana), has been affected in southern Florida. We summarize studies in which diverse measures were tested for managing the disease. In all studies, trees were treated with potential laurel wilt control measures and subsequently inoculated with R. lauricola. On potted plants in greenhouse experiments, commercial nutritional products (Greenstim and Keyplex 350) and SAR products (Agri-Fos and Nutri-Phite), when applied as soil drenches or foliar sprays, had either no impact on, or increased laurel wilt symptom development compared to non-treated control treatments. Bark applications of Tilt (a propiconazole fungicide for which emergency registration had been obtained in 2010) in a surfactant (Pentrabark) enabled significant laurel wilt protection in greenhouse studies on small potted plants, but Pentrabark and other surfactants moved little propiconazole into the xylem of fruit-bearing trees in field studies. In efficacy studies in the field, Propiconazole Pro (an injectable formulation of propiconazole), Tilt, and two experimental formulations of another triazole fungicide, tebuconazole, decreased the development of laurel wilt compared to nontreated control trees when applied as undiluted injections into branches and scaffold limbs (microinjection), or injection of dilute fungicide into tree flare roots (macroinfusion). However, symptoms developed in all treated trees by 10–11 months after inoculation with R. lauricola, indicating that trees would need to be re-treated at least on an annual basis. Regardless of how fungicides were applied, insignificant levels of different active ingredients entered fruit. Although fungicide treatment of fruit-bearing avocado trees is not a concern for food safety and several triazole and DMI fungicides can protect avocado trees from laurel wilt, cost-effective measures with which the xylem could be loaded with and protected by these products remains a challenge. Management of laurel wilt in commercial avocado production areas is discussed.  相似文献   

4.
Alternaria genus includes many plant pathogens on numerous hosts, causing leaf spots, rots and blights. Alternaria blight has been observed as one of the important fungal diseases of pistachio (Pistacia vera L.) as well as its wild relatives (P. terebinthus, P. lentiscus, P. khinjuk, P. atlantica, P. mutica) in Turkey. Alternaria species were sampled from Pistacia spp. hosts from different geographic regions in Turkey during field trips in late spring to early fall of 2013. Alternaria blight symptoms were observed mainly on fruits and rarely on leaves. Four hundred and twenty two of the isolates were morphologically defined as A. alternata, A. tenuissima, A. arborescens and also intermediate morpho-species between A. alternata/A. arborescens. Pathogenicity of the isolates was confirmed with host inoculations on detached fruits. Mating types of 270 isolates of Alternaria spp. from the collection were identified using a PCR-based mating type assay that amplifies either a MAT1-1 or a MAT1-2 fragment from the mating locus. Although a strongly clonal population structure was expected due to the putative asexual reproduction of these fungi, both idiomorphs were detected at equal frequencies at several different spatial scales. The distribution of mating types within each geographic region, within host species as well as in overall collection was not significantly different from 1:1. Amplified fragments of partial idiomorph sequences were obtained for representative isolates. Parsimony trees were depicted based on sequence data of mating type genes for these representative isolates as well as some other Alternaria species obtained by Genebank. Several point mutations presented a few clusters which are supported by high bootsrapped values. The Alternaria blight disease agents both from cultivated and wild hosts were pathogenic on pistachio which may cause difficulties to control the disease because of extensity of pathogen sources. Besides, equal mating type distribution of the pathogen at both geographic and host species levels suggests a potential for sexual reproduction of Alternaria spp. in Turkey.  相似文献   

5.
Gilbertella persicaria is a pathogenic fungus recently reported as a causative agent of soft rot in papaya fruits. Here the interactions between G. persicaria and papaya fruits was analyzed under laboratory conditions using histological techniques and optical microscopy to elucidate the process of pathogenesis. Healthy and disinfested fruits of papaya cv. Maradol were also inoculated with a suspension of sporangiospores of G. persicaria. Tissue sections were cut, which were subjected to differential staining with safranin-fast green for different times. Sporangiospores presumably adhered to the cuticle of the fruit by 3 h post inoculation (hpi) and germinated by 6 hpi; invasive intracellular hyphae were growing in host cells by 9 hpi. By 15 hpi, fruit epidermis was macerated, presumably by enzymatic activity reported for mucoral fungal species and appeared as a wet-looking lesion on the cuticle. Fruit mesocarp was colonized by 30 hpi, and asexual reproduction structures had formed by 48 hpi. This process of infection and disease development of G. persicaria in papaya fruits corresponds to that used by pathogens with a necrotrophic lifestyle.  相似文献   

6.
Two hymenopteran parasitoids of the cactus scale Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on Opuntia ficus-indica (L.) Mill. (Cactaceae) are recorded in Greece. Aphytis debachi Azim, 1963 (Aphelinidae) is first recorded for Europe and Plagiomerus diaspidis Crawford, 1910 (Encyrtidae) is first recorded for Greece. Preliminary data on phenology and natural enemies of the scale D. echinocacti on O. ficus-indica are presented. Parasitism of D. echinocacti by P. diaspidis reached 86% in southern Greece (Kalamata) and parasitism by A. debachi reached 9.3% and 12% in Kalamata and Athens, respectively. Two predators, Cybocephalus fodori Endrödy-Youga (Coleoptera: Nitidulidae) and a mite species (Prostigmata: Bdellidae), were found to be associated with D. echinocacti.  相似文献   

7.
Fusarium is one of the most destructive fungal genera whose members cause many diseases on plants, animals, and humans. Moreover, many Fusarium species secrete mycotoxins (e.g. trichothecenes and fumonisins) that are toxic to humans and animals. Fusarium isolates from date palm trees showing disease symptoms, e.g. chlorosis, necrosis and whitening, were collected from seven regions across Saudi Arabia. After single-sporing, the fungal strains were morphologically characterized. To confirm the identity of morphologically characterized Fusarium strains, three nuclear loci, two partial genes of translation elongation factor 1 α (tef1α) and β-tubulin (tub2), and the rDNA-ITS region, were amplified and sequenced. Of the 70 Fusarium strains, 70 % were identified as F. proliferatum that were recovered from six regions across Saudi Arabia. Fusarium solani (13 %), as well as one strain each of the following species: F. brachygibbosum, F. oxysporum, and F. verticillioides were also recovered. In addition, five Fusarium-like strains were recognized as Sarocladium kiliense by DNA-based data. The preliminary in vitro pathogenicity results showed that F. proliferatum had the highest colonization abilities on date palm leaflets, followed by F. solani. Although F. oxysporum f. sp. albedinis is the most serious date palm pathogen, F. proliferatum and F. solani are becoming serious pathogens and efforts should be made to restrict and control them. In addition, the potential toxin risks of strains belonging to F. proliferatum should be evaluated.  相似文献   

8.
Nonpathogenic isolates of Fusarium oxysporum can be successful antagonists of pathogenic forms of the same fungal species that commonly attacks crop plants. The characteristics that distinguish nonpathogenic from pathogenic forms are not well understood. In this study, the mode of root colonization of Eucalyptus viminalis seedlings by a nonpathogenic F. oxysporum strain is described at the ultrastructural level. Root systems of E. viminalis plants were inoculated with nonpathogenic F. oxysporum strain Fo47 in an in vitro model system. Changes in the occurrence of nonesterified and methyl-esterified pectins in colonized E. viminalis roots were evaluated by in situ immunolabeling using two monoclonal antibodies, JIM 5 and JIM 7. Modes of penetration and root colonization patterns in E. viminalis seedlings by the nonpathogenic fungus were similar to those described for pathogenic forms of F. oxysporum. However, root interactions differed in that the nonpathogenic fungus did not induce host tissue damage. No papilla-like appositions were observed in host cells in response to invading hyphae, which did not disrupt the host plasma membrane in many cases, suggesting that a biotrophic relationship was established. Root colonization by the nonpathogenic strain did not induce alteration in JIM 7 labeling of methyl-esterified pectin in E. viminalis cell walls, whereas nonesterified pectin was detected to a significantly greater extent in cell walls of roots colonized by the fungus. Pectin components decreased slightly only at points of hyphal contact with host cells. Because nonpathogenic strains utilize pectin in pure culture, host control over enzyme activity or production by the fungi may at least partly explain their compatible interactions with host tissues.  相似文献   

9.
Two Camarotella (Phyllachoraceae) species, C. torrendiella and C. acrocomiae are the causative agents of small (SV) and large verrucosis (LV), respectively, which are important diseases affecting Brazilian coconut palms. The small verrucosis produces necrotic lesions in coconut palm leaflets, whereas LV just produces chlorosis. Semi-thin sections of asymptomatic leaflets and of leaves presenting stromata in different development stages were compared through light microscopy in order to characterize the colonization process of these two coconut palm verrucosis agents. Camarotella torrendiella initially colonized the adaxial epidermal cells and the cells underlying the epidermis close to the vascular bundles. In latter colonization stages, the hyphae of C. torrendiella remained limited to the underlying necrotic tissue adjacent to the mature stromata, mostly in the intracellular spaces and in the collapsing cells of necrotized tissues around the vascular bundles. This species does not colonize intracellular intact fiber cells, xylem vessels or phloem sieve tube elements. In contrast, C. acrocomiae presented a typical biotrophic parasitism model such as that of some gramineous Phyllachora spp. High densities of C. acrocomiae hyphae were found inside intact sieve tube elements; however, with no evidence of cellular death. The extensive hyphal colonization by C. acrocomiae within sieve tube elements was also observed in tertiary and quaternary bundles, as well as in anastomosing vascular bundles. The dependence of both species on the colonization sites associated with vascular bundles indicates the need for additional studies about these intricate host-pathogen relationships. These studies could be important to define new strategies to control coconut palm verrucosis diseases.  相似文献   

10.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

11.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

12.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

13.
Zonate leaf spot (Gloeocercospora sorghi) is a common disease in Sorghum bicolor producing areas of the U.S., but little is known about its biology, virulence and severity on S. bicolor, Zea mays, and related crop grassweeds. Greenhouse studies were conducted to determine and compare the virulence and severity of G. sorghi on 10 commercially available sorghum hybrids, four Z. mays hybrids and selected grassweed species including Sorghum bicolor (grain sorghum and shattercane biotypes) and Sorghum halepense (Johnsongrass), two of the most problematic arable weeds. Plants from the respective species were inoculated with a local G. sorghi isolate and maintained in a dew-chamber at 24 °C for 24 h and then incubated under greenhouse conditions for 4 weeks. Plants were observed for lesion expression and rated using a modified Horsfall-Barrett scale (0–10). The first symptoms of infection were visible within 24 h following inoculation on shattercane and S. bicolor hybrids. Symptoms consisted of small, non-diagnostic purple lesions on the leaves. Results showed that S. bicolor, S. halepense and shattercane were susceptible to G. sorghi. All other species tested in this study were not infected. More particularly, disease severity, increased from a rating of 3 to 10 on sorghum and from 2 to 7 on S. halepense between 2 and 23 days after inoculation, respectively. However, disease severity on shattercane increased rapidly from 3.5 to 10 between 2 and 8 days after inoculation, respectively. Among the sorghum hybrids tested, FFR-322 appeared to be the most resistant to G. sorghi while Pioneer 83G66 appeared to be the most susceptible. Z. mays hybrids were not infected by the fungus used in this study. G. sorghi could be used effectively to manage shattercane and S. halepense infestations occurring in Z. mays and S. bicolor fields consisting of specific G. sorghi-resistant hybrids.  相似文献   

14.
Parasitoids are characterized by a defined range of hosts, either more specialist or generalist. Under natural conditions, females may encounter different host species on the same plant or in the same location. In this case, their preference for one host could influence their choice. However, the presence of less suitable hosts may also affect their choice and, in some cases, may reduce their interest in a patch where both preferred and less preferred hosts are available. The aim of the present study was to test the consequences of the simultaneous presence of three cereal aphids (Sitobion avenae Fabricius, Metopolophium dirhodum Walker, and Rhopalosiphum padi Linnaeus) on the parasitism by two of their parasitoids, Aphidius ervi Haliday and Praon volucre Haliday. Firstly, in the no-choice experiment, A. ervi parasitized on S. avenae at a significantly higher rate as compared to M. dirhodum, whereas no parasitism on R. padi was observed. P. volucre parasitized the three species of cereal aphids with a significant preference for S. avenae. Interestingly, when two or three host species were offered simultaneously in the same quantity to pairs of parasitoids, the level of parasitism was less than that observed for one host species alone. This observation exhibits a distractive effect on non-host species, from the defense mechanism of a non-suitable host or from the perception of bad quality patches. These results raise the question of the practical application of inundative release of parasitoids for biocontrol when several hosts are available simultaneously.  相似文献   

15.
Hibiscus syriacus, as a national flower of Korea, is most popularly used for ornamental purposes and includes numerous cultivars, and it is widely planted in temperate zones that feature hot summers. We investigated Choanephora flower rot on H. syriacus from 2012 to 2014 in Korea and Japan and confirmed Choanephora infection in several localities in both countries. Here, our objectives were to identify the main causal agent of Choanephora flower rot on H. syriacus and describe its morphological and molecular characteristics. We identified 44 out of 50 isolates as Choanephora cucurbitarum and the remainder as C. infundibulifera based on morphological characterization and phylogenetic analysis. The sequences of the internal transcribed spacer region (ITS) of ribosomal DNA and the D1/D2 region of the large subunit (LSU) rDNA of examined isolates were compared with sequences obtained from GenBank, and the analysis of the results revealed 100 % identity with the corresponding sequences of C. cucurbitarum and C. infundibulifera strains. Classification of the Choanephora species performed here according to the key described by Kirk (1984) corresponded with the results of the phylogenetic analysis of this study. Through intraspecific and interspecific mating tests, the characteristics of zygospore were described in details. Pathogenicity tests using both species showed the same symptoms, causing blossom blight and soft rot on the flowers, which were identical to those observed in the field. All identified causal agents of Choanephora rot were indeed Choanephora species, where C. cucurbitarum was identified in the majority, while the others were in the minority of examined samples.  相似文献   

16.
Oligonychus yothersi (Acari: Tetranychidae) causes damage to a wide range of plants. The aim of this work was to record the occurrence of this mite species feeding on one-year-old plants of Eucalyptus urophylla in the field and describe the damages that this mite causes to plant species. This mite species was commonly found attacking E. urophylla plants in Viçosa (MG), Brazil. The observed damage was similar to that caused by herbivorous mites that feed directly on the leaf surface and cause premature falling of the attacked leaves. This fact indicates that this mite species may be a potential pest for eucalyptus plants and crops, which makes it essential to carry out further studies on this subject, especially during periods with low intensity of rainfall and humidity.  相似文献   

17.
The most harmful hymenopteran pests of Pinus sylvestris L. are conifer sawflies from the family Diprionidae, including the widespread Diprion pini (L.). Natural enemies of this pest are still poorly known in many European areas where attacks occur. We studied the egg parasitoids of D. pini at four sites in two mountainous areas of Spain: the Sierra de Francia (western Spain) and the Sierra de Albarracín (eastern Spain). At all sites, the dominant egg parasitoid was Neochrysocharis formosa (Westwood) (Hymenoptera: Eulophidae), whereas other three chalcidoid species were rare. All these species were previously recorded in association with D. pini, but we report here their first record in Spain. Neochrysocharis formosa attacked up to 32.3% of egg clusters of D. pini in the Sierra de Albarracín and 18.5% in the Sierra de Francia. In the attacked egg clusters, this species parasitized up to 35% of eggs in the Sierra de Albarracín and 23.7% in the Sierra de Francia, with a marked female-biased sex ratio. Contrary to the clustered pattern of parasitism observed for N. formosa while attacking other gregarious diprionids, the oviposition in egg clusters of D. pini followed a random pattern, probably due to the froth roof (spumous coating) that covers its eggs and interferes with the egg-searching behavior of females. Indeed, other parasitoid species of D. pini have been reported to behave similarly.  相似文献   

18.
Nicandra physaloides, a common weed in South America, was found to be infected by an isolate of Tomato severe rugose virus (ToSRV), a bipartite begomovirus. The plants developed severe yellow rugose mosaic and were collected in São Paulo State, Brazil. This isolate of ToSRV was transmitted by Bemisia tabaci B biotype from infected plants of N. physaloides to healthy plants of N. physaloides and tomato in a glasshouse. This is the first report of natural infection of N. physaloides by ToSRV in Brazil.  相似文献   

19.
Yellow Sigatoka that is caused by Pseudocercospora musae is an important banana disease. The aim of this study was to elucidate the infection process of P. musae in banana leaves by scanning electron microscopy. Leaf samples were inoculated on the abaxial surface with P. musae and then analysed at 12, 24, 36, 48, 72, 96, 120, 144, and 168 h post inoculation (hpi) and at 36 and 50 days post inoculation (dpi). The conidia were found to be germinated between 24 and 36 hpi and penetrated through the stomata between 96 and 120 hpi, or more generally from 144 hpi. P. musae colonized the spongy parenchyma at 36 dpi and the palisade parenchyma at 50 dpi. Sporulation occurred at 50 dpi on the adaxial surface of leaves through the emergence of conidia on conidiophores through the stomata. Considering the importance of yellow Sigatoka in banana production, our results provide a better understanding of the life cycle of the fungus for treatment processes.  相似文献   

20.
Alternative hosts are an important way of phytopathogenic bacteria survival between crop seasons, constituting a source of inoculum for the following crops. Bacterial wilt, caused by Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff), is one of the most important diseases for common bean, and little information is available about the host range of the bacterium. In this study, we assessed possible alternative hosts for Cff, especially those cultivated during winter, in rotation systems with common bean. Plants of barley, black oat, canola, radish, ryegrass, wheat and white oat, were assessed under field and greenhouse conditions. Cff colonized epiphytically all plant species and endophytically black oat, ryegrass, wheat and white oat plants assessed in the greenhouse assays. Under field conditions, Cff colonized all plant species by except radish. All bacterial strains re-isolated from the plants were pathogenic to common bean and identified as Cff by PCR with specific primers. Based on our results, the cultivation of bean crop in succession with barley, black oat, canola, ryegrass, wheat and white oat should not be recommended, mainly in areas with a history of bacterial wilt occurrence. In these cases, the better option for crop rotation during the winter is radish, a non-alternative host for Cff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号