首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenology can have a profound effect on growth and climatic adaptability of northern tree species. Although the large interannual variations in dates of bud burst and growth termination have been widely discussed, little is known about the genotypic and spatial variations in phenology and how these sources of variation are related to temporal variation. We measured bud burst of eight white birch (Betula pendula Roth) clones in two field experiments daily over 6 years, and determined the termination of growth for the same clones over 2 years. We also measured yearly height growth. We found considerable genetic variation in phenological characteristics among the birch clones. There was large interannual variation in the date of bud burst and especially in the termination of growth, indicating that, in addition to genetic effects, environmental factors have a strong influence on both bud burst and growth termination. Height growth was correlated with timing of growth termination, length of growth period and bud burst, but the relationships were weak and varied among years. We accurately predicted the date of bud burst from the temperature accumulation after January 1, and base temperatures between +2 and -1 degrees C. There was large clonal variation in the duration of bud burst. Interannual variation in bud burst may have important consequences for insect herbivory of birches.  相似文献   

2.
We tested three theories predicting the timing of bud burst in mature birch (Betula pendula Roth) trees utilizing a 60-year phenological time series together with meteorological temperature observations. Predictions of the timing of bud burst based on light conditions in addition to temperature were more accurate than predictions based on dormancy development and temperature (prediction standard error of 2.4 days versus 4.3 days). The signal from light conditions, represented by fixed calendar date, determined the start of bud ontogenesis rather than dormancy release. We suggest that models developed to predict the timing of bud burst be utilized in the analysis of plant responses to climate change and of climate change itself.  相似文献   

3.
We examined effects of elevated CO(2) and temperature on cold hardiness and bud burst of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings. Two-year-old seedlings were grown for 2.5 years in semi-closed, sunlit chambers at either ambient or elevated (ambient + ~ 4 degrees C) air temperature in the presence of an ambient or elevated (ambient + ~ 200 ppm) CO(2) concentration. The elevated temperature treatment delayed needle cold hardening in the autumn and slowed dehardening in the spring. At maximum hardiness, trees in the elevated temperature treatment were less hardy by about 7 degrees C than trees in the ambient temperature treatment. In general, trees exposed to elevated CO(2) were slightly less hardy during hardening and dehardening than trees exposed to ambient CO(2). For trees in the elevated temperature treatments, date to 30% burst of branch terminal buds was advanced by about 6 and 15 days in the presence of elevated CO(2) and ambient CO(2), respectively. After bud burst started, however, the rate of increase in % bud burst was slower in the elevated temperature treatments than in the ambient temperature treatments. Time of bud burst was more synchronous and bud burst was completed within a shorter period in trees at ambient temperature (with and without elevated CO(2)) than in trees at elevated temperature. Exposure to elevated temperature reduced final % bud burst of both leader and branch terminal buds and reduced growth of the leader shoot. We conclude that climatic warming will influence the physiological processes of dormancy and cold hardiness development in Douglas-fir growing in the relatively mild temperate region of western Oregon, reducing bud burst and shoot growth.  相似文献   

4.
Ecophysiological models predicting timing of bud burst were tested with data gathered from 40-year-old Norway spruce (Picea abies (L.) Karst.) trees growing in northern Sweden in whole-tree chambers under climatic conditions predicted to prevail in 2100. Norway spruce trees, with heights between 5 and 7 m, were enclosed in individual chambers that provided a factorial combination of ambient (365 micromol mol-1) or elevated (700 micromol mol-1) atmospheric CO2 concentration, [CO2], and ambient or elevated air temperature. Temperature elevation above ambient ranged from +2.8 degrees C in summer to +5.6 degrees C in winter. Compared with control trees, elevated air temperature hastened bud burst by 2 to 3 weeks, whereas elevated [CO2] had no effect on the timing of bud burst. A simple model based on the assumption that bud rest completion takes place on a fixed calendar day predicted timing of bud burst more accurately than two more complicated models in which bud rest completion is caused by accumulated chilling. Together with some recent studies, the results suggest that, in adult trees, some additional environmental cues besides chilling are required for bud rest completion. Although it appears that these additional factors will protect trees under predicted climatic warming conditions, increased risk of frost damage associated with earlier bud burst cannot be ruled out. Inconsistent and partially anomalous results obtained in the model fitting show that, in addition to phenological data gathered under field conditions, more specific data from growth chamber and greenhouse experiments are needed for further development and testing of the models.  相似文献   

5.
Past research has established that terminal buds of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from many seed sources have a chilling requirement of about 1200 h at 0-5 degrees C; once chilled, temperatures > 5 degrees C force bud burst via accumulation of heat units. We tested this sequential bud-burst model in the field to determine whether terminal buds of trees in cooler microsites, which receive less heat forcing, develop more slowly than those in warmer microsites. For three years we monitored terminal bud development in young saplings as well as soil and air temperatures on large, replicated plots in a harvest unit; plots differed in microclimate based on amount of harvest residue and shade from neighboring stands. In two of three years, trees on cooler microsites broke bud 2 to 4 days earlier than those on warmer microsites, despite receiving less heat forcing from March to May each year. A simple sequential model did not predict cooler sites having earlier bud burst nor did it correctly predict the order of bud burst across the three years. We modified the basic heat-forcing model to initialize, or reset to zero, the accumulation of heat units whenever significant freezing temperature events (> or = 3 degree-hours day(-1) < 0 degrees C) occurred; this modified model correctly predicted the sequence of bud burst across years. Soil temperature alone or in combination with air temperature did not improve our predictions of bud burst. Past models of bud burst have relied heavily on data from controlled experiments with simple temperature patterns; analysis of more variable temperature patterns from our 3-year field trial, however, indicated that simple models of bud burst are inaccurate. More complex models that incorporate chilling hours, heat forcing, photoperiod and the occurrence of freeze events in the spring may be needed to predict effects of future silvicultural treatments as well to interpret the implications of climate-change scenarios. Developing and testing new models will require data from both field and controlled-environment experiments.  相似文献   

6.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

7.
Studies of small trees growing in pots have established that individual amino acids or amides are translocated in the xylem sap of a range of tree species following bud burst, as a consequence of nitrogen (N) remobilization from storage. This paper reports the first study of N translocation in the xylem of large, deciduous, field-grown trees during N remobilization in the spring. We applied 15N fertilizer to the soil around 10-year-old Prunus avium L. and Populus trichocharpa Torr. & Gray ex Hook var. Hastata (Dode) A. Henry x Populus balsamifera L. var. Michauxii (Dode) Farwell trees before bud burst to label N taken up by the roots. Recovery of unlabeled N in xylem sap and leaves was used to demonstrate that P. avium remobilizes N in both glutamine (Gln) and asparagine (Asn). Sap concentrations of both amides rose sharply after bud burst, peaking 14 days after bud burst for Gln, and remaining high some 45 days for Asn. There was no 15N enrichment of either amide until 21 days after bud burst. In the Populus trees, nearly all the N was translocated in the sap as Gln, the concentration of which peaked and then declined before the amide was enriched with 15N, 40 days after bud burst. Xylem sap of clonal P. avium trees was sampled at different positions in the crown to assess if the amino acid and amide composition of the sap varied within the crown. Sap was sampled during remobilization (when the concentration of Gln was maximal), at the end of remobilization and at the end of the experiment (68 days after bud burst). Although the date of sampling had a highly significant effect on sap composition, the effect of position of sampling was marginal. The results are discussed in relation to N translocation in adult trees and the possibility of measuring N remobilization by calculating the flux of N translocation in the xylem.  相似文献   

8.
According to prevailing theory, air temperature is the main environmental factor regulating the timing of bud burst of boreal and temperate trees. Air temperature has a dual role in this regulation. First, after the cessation of growth in autumn, prolonged exposure to chilling causes rest completion, i.e., removes the physiological growth-arresting conditions inside the bud. After rest completion, prolonged exposure to warm conditions causes ontogenetic development leading to bud burst or flowering. During the past three decades, several simulation models based on chilling and forcing have been developed and tested. In recent modeling studies of the timing of bud burst in mature trees, the simpler thermal-time models that assume forcing starts on a fixed date in the spring have outperformed the chilling-forcing models. We hypothesize that this discrepancy may be due to some element missing from the chilling-forcing models. We tested two new model formulations by introducing reversing, temperature-driven elements that precede forcing and by fitting the models to seven historical time series of data of flowering and leaf bud burst of common boreal tree species. In these tests, both of the new models were generally more accurate in predicting the timing of bud burst than a classical chilling-forcing model, but less accurate than the simple thermal-time model. We therefore conclude that besides chilling, other environmental factors are involved in the regulation of the timing of bud burst. Further work is needed to determine if the regulatory factors derive from air temperature or from some other environmental condition such as changes in light conditions, like day length or night length.  相似文献   

9.
The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo and light microscopic levels in fresh-cut and fixed buds obtained by regular field samplings during the spring of 2007, 2008 and 2009. Buds were collected from 15 randomly selected trees (all 16 years old in 2007) of one southern Finnish half-sib family. The air temperature was recorded hourly throughout the observation period. In 2008 and 2009, initial events in the buds, seen as accumulation of lipid droplets in the cortex area, started in mid-March and were depleted in late April, simultaneously with the early development of vascular tissue and primordial needles. In mid-April 2007, however, the development of the buds was at least 10 days ahead as a result of warm spells in March and early April. Variation in the timing of different developmental phases within and among the sample trees was negligible. There was no clear one-to-one correspondence between the externally visible and the internal development of the buds. The dependence of the primordial shoot ratio on different types of temperature sum was studied by means of regression analysis. High coefficients of determination (R(2)?≈?95%) were attained with several combinations of the starting time (beginning of the year/vernal equinox), the threshold value (from -3 to +5 °C), and the time step (hour/day) used in the temperature summation, i.e., the prediction power of the primordial shoot ratio models turned out to be high, but the parameter estimate values were not unambiguous. According to our results, temperature sums describe the growth of the primordial shoot inside the bud before bud burst. Thus, the results provide a realistic interpretation for the present phenological models of bud development that are based on temperature sums and external observations of bud burst only, and they also provide new tools for improving the models.  相似文献   

10.
Heide OM 《Tree physiology》2003,23(13):931-936
The effect of temperature during short-day (SD) dormancy induction was examined in three boreal tree species in a controlled environment. Saplings of Betula pendula Roth, B. pubescens Ehrh. and Alnus glutinosa (L.) Moench. were exposed to 5 weeks of 10-h SD induction at 9, 15 and 21 degrees C followed by chilling at 5 degrees C for 40, 70, 100 and 130 days and subsequent forcing at 15 degrees C in a 24-h photoperiod for 60 days. In all species and with all chilling periods, high temperature during SD dormancy induction significantly delayed bud burst during subsequent flushing at 15 degrees C. In A. glutinosa, high temperature during SD dormancy induction also significantly increased the chilling requirement for dormancy release. Field experiments at 60 degrees N with a range of latitudinal birch populations revealed a highly significant correlation between autumn temperature and days to bud burst in the subsequent spring. September temperature alone explained 20% of the variation between years in time of bud burst. In birch populations from 69 and 71 degrees N, which ceased growing and shed their leaves in August when the mean temperature was 15 degrees C, bud burst occurred later than expected compared with lower latitude populations (56 degrees N) in which dormancy induction took place more than 2 months later at a mean temperature of about 6 degrees C. It is concluded that this autumn temperature response may be important for counterbalancing the potentially adverse effects of higher winter temperatures on dormancy stability of boreal trees during climate warming.  相似文献   

11.
A complete diallel cross was made among nine Betula pendula trees growing in a natural population and a trial was planted on agricultural soil at one site. This exceptional trial has provided estimates of genetic parameters that can only be estimated in complete diallels. Traits measured were height and diameter during a period of 37 years, and assessments were made of bud burst, leaf abscission and rust infection at the early ages. All traits showed genetic variation and the variance components of general combining ability (GCA) effects were dominating, with heritability estimates of 0.16 and 0.23 for height and diameter at age six years. The best-growing families could be identified at that age. At age 37 years, when the trial had been thinned twice, the offspring from the highest and lowest ranked parent for growth contributed with 19% and 6% of the total volume of the stand, respectively. The GCA effects were also highly significant for the assessment traits, but with an interaction with year for bud burst. High values of estimates of genetic correlations proved that bud burst, leaf abscission and rust infection are interrelated, and also to some extent with growth traits. Families with an early bud burst were tallest, were less affected by the rust fungus and kept their leaves later in the autumn.  相似文献   

12.
Bud development of boreal trees in spring, once initiated, is driven by ambient air temperature, but the mechanism triggering bud development remains unclear. We determined if some aspect of the diurnal or seasonal light regime influences initiation of bud burst once the chilling requirement is met. We grew 3-year-old birch plantlets cloned from a mature tree of boreal origin in light conditions realistically simulating the lengthening days of spring at 60 degrees N. To emulate the reduction in red to far-red light (R:FR) ratio between daylight and twilight, one group of plantlets was subjected to reduced R:FR ratio in the morning and evening in addition to progressively lengthening days, whereas the other group was subjected to the same R:FR ratio throughout the day. The reduced R:FR ratio of twilight advanced bud burst by 4 days compared with the reference group (P = 0.04). To assess the interplay between the fulfillment of the chilling requirement and the subsequent response to warming, we fitted a thermal time model to the data with separate parameterizations for the starting dates of heat sum accumulation in each treatment. Least-squares fitting suggested that bud development started in light regimes corresponding to late March, almost two months after the chilling requirement for dormancy release was satisfied. Therefore, shortening night length or increasing day length, or both, appears to be the cue enabling bud development in spring, with twilight quality having an effect on the photoperiodic response. If twilight alone were the cue, the difference in bud burst dates between the experimental groups would have been greater than 4 days. The result gives experimental support for the use of thermal-time models in phenological modeling.  相似文献   

13.
Detailed knowledge of temperature effects on the timing of dormancy development and bud burst will help evaluate the impacts of climate change on forest trees. We tested the effects of temperature applied during short-day treatment, duration of short-day treatment, duration of chilling and light regime applied during forcing on the timing of bud burst in 1- and 2-year-old seedlings of nine provenances of Norway spruce (Picea abies (L.) Karst.). High temperature during dormancy induction, little or no chilling and low temperature during forcing all delayed dormancy release but did not prevent bud burst or growth onset provided the seedlings were forced under long-day conditions. Without chilling, bud burst occurred in about 20% of seedlings kept in short days at 12 degrees C, indicating that young Norway spruce seedlings do not exhibit true bud dormancy. Chilling hastened bud burst and removed the long photoperiod requirement, but the effect of high temperature applied during dormancy induction was observed even after prolonged chilling. Extension of the short-day treatment from 4 to 8 or 12 weeks hastened bud burst. The effect of treatments applied during dormancy development was larger than that of provenance; in some cases no provenance effect was detected, but in 1-year-old seedlings, time to bud burst decreased linearly with increasing latitude of origin. Differences among provenances were complicated by different responses of some origins to light conditions under long-day forcing. In conclusion, timing of bud burst in Norway spruce seedlings is significantly affected by temperature during bud set, and these effects are modified by chilling and environmental conditions during forcing.  相似文献   

14.
15.
We examined the effects of several photoperiod and temperature regimes imposed during the winter-spring period on the timing of bud burst in rooted cuttings of Norway spruce (Picea abies (L.) Karst.) grown in a greenhouse in Finland. The treatments were initiated in November and December after the cuttings had been exposed to natural chilling and freezing events. Irrespective of the treatments applied, time to bud burst decreased with increased duration of previous exposure to natural chilling and freezing events. Fluctuating day/night temperatures and continuous lengthening of the photoperiod hastened bud burst. Shortening the photoperiod delayed bud burst, suggesting that little or no ontogenetic development toward bud burst takes place during mild periods before the winter solstice. In the case of climatic warming, this phenomenon may prevent the premature onset of growth that has been predicted by computer simulations with models that only consider temperature regulation of bud burst.  相似文献   

16.
Earlier modeling has suggested that long distance gene flow is of importance in increasing the adaptability of tree populations in a changing climate. In times of warming temperatures, early flowering phenotypes may be favored, because early flowering may be connected to early onset of growth. Long term direct measurements of flowering, pollen cloud and intrapopulation fecundity variations are needed to test this hypothesis. Having one of the furthest transported types of pollen grains, birch may have good potential for long distance gene flow. Our daily observations over eight years, of 30 silver birches (Betula pendula Roth), showed that the onset and duration of flowering phenology was determined by the accumulation of spring temperature sums, but the window for potential long distance gene flow was narrow. The interannual phenology variations were large, the order of timing of female and male catkins in various trees of this monoecious species tended to differ, and the timing of generative and vegetative spring phenologies were not correlated at tree level. Early flowering trees tended to have a higher variation in germinability than later flowering trees. No other connection between timing of phenology of flowering and seed quantity or quality was found. Although stochastic climatic conditions produce interannually variable phenological windows, probability for long distance gene flow from areas differing in timing of spring temperature accumulations may be low in silver birch. Intertree variations in fecundity were high, and the majority of seeds and pollen were produced by only a few trees. Moreover, the amount of seeds produced was positively related to seed germinability, thus large phenotypic fecundity variations may decrease interannual genetic variations in seed sets.  相似文献   

17.

The purpose of the study was to estimate among- and within-population variation for juvenile growth and for growth rhythm traits, bud flushing and leaf colouring, in open-pollinated families of Quercus robur L. from six Lithuanian populations under different environmental conditions. Assessments were done in the nursery up to 4 yrs, and after replanting in three field trials at the age of 6 yrs. A highly significant population effect was found for bud flushing. Large family variance components were estimated for bud flushing and height. The family×site interaction was significant and more pronounced for growth cessation and height than for bud flushing. Depending on the trait, from 13 to 33% of families contributed significantly to the family×site interaction. Strongly significant site×population interaction was estimated only for bud flushing. Families with early bud flushing were taller, although the correlation was weak. Correlations between family means in bud flushing and bud flushing of parent trees varied from 0.53 to 0.60. Large CVA estimates for the adaptive traits suggest that species have a potential to adapt to environmental changes that may occur from global warming and indicate good perspectives for gene conservation and tree breeding when using Multiple Population Breeding System.  相似文献   

18.
In order to assess the genetics of fall cold hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco), shoot cuttings were collected in October from saplings (9-year-old trees) of open-pollinated families in two progeny tests in each of two breeding zones in Washington, one in the Coast range (80 families) and one on the west slope of the Cascade Mountains (89 families). Samples from over 5500 trees were subjected to artificial freezing and visually evaluated for needle, stem and bud tissue injury. The extent to which cold injury is genetically related to tree height and shoot phenology (timing of bud burst and bud set) was also evaluated.

Significant family variation was found for all cold hardiness traits; however, individual heritability estimates were relatively low (ranging from 0.09 to 0.22). Significant family-by-test site interaction was detected for needle injury in the Cascade breeding zone, but not in the coastal zone. Genetic correlations (rA) among needle, stem and bud tissues for cold damage were weak (0.16 ≤ rA ≤ 0.58) indicating that genes controlling fall hardening are somewhat different for different tissues. Timing of bud burst and bud set were only weakly correlated with cold injury (rA ≤ 0.49). Thus, bud phenology is a poor predictor of fall cold hardiness in this species. There was no consistent relationship between tree height and cold injury in the coastal zone. In the Cascade zone, taller trees appeared to be more susceptible to cold injury, but the association was weak (mean rA = 0.38, range 0.20 – 0.72).  相似文献   


19.
Bud flushing is very important for the survival and growth of trees, a phenomenon matched each year with the annual course of temperature and the timing of bud flushing in the spring. Essentially it represents a serious ecological and evolutionary tradeoff between survival and growth. The most suitable timing of bud burst permits trees to begin growth sufficiently early to take advantage of favorable spring conditions, but late enough to decrease the risks of tissue damage from late frost. In the present study bud burst spring phenology of poplar (Populus tremula and P. tremuloides) from eight different provenances, originating from Europe and the USA, was observed during March and April, 2009. The experimental plot was located at Solling, Germany (51°44′0″ N, 9°36′0″ E). A six stage subjective scoring system of bud burst phenology was used to identify the phenological stages of the seedlings, where each plant was observed twice a week. The aim of the study was to predict phenotypic variation in poplar, originating from regions between 42° and 60° N latitude, growing in similar environments. Timing of bud flushing of poplar was recorded. It was found that seedlings of provenance 3, which originated from 42.35° N latitude, started and completed flushing significantly earlier than those of other provenances, while seedlings of provenance 5, originating from 54.29° N latitude, started flushing very late and only a few plants reached top scoring at the end of the experimental period. Analysis of variance showed statistically highly significant differences (p < 0.05) in bud flushing among the provenances. The correlation between scoring and flushing periods was very strong within provenances although the flushing pattern differed among provenances (origin of the planted seedlings). Bud flushing showed a negative correlation with the origin of the planted seedlings. Given the field experience gained with this experiment, it is recommended that seedlings from provenances 5 and 8 could be used for future plantations where late frost may be a problem for the young shoots of seedlings.  相似文献   

20.
Chen Z  Kolb TE  Clancy KM 《Tree physiology》2001,21(16):1159-1169
We compared growth rates among mature interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees showing resistance or susceptibility to defoliation caused by western spruce budworm (Choristoneura occidentalis Freeman), and among clones and half-sib seedling progeny of these trees in a greenhouse. We also investigated bud burst phenology and photosynthetic responses of clones to budworm defoliation in greenhouse experiments. Resistant mature trees had a higher radial growth rate than susceptible trees, especially during periods of budworm defoliation. Clones from resistant trees grew larger crowns than clones from susceptible trees, whereas stem base diameter at the ground line and height did not differ. Half-sib seedling progeny from resistant trees had larger stem diameter, height, and total biomass than progeny from susceptible trees. Mean 5-year radial growth increment of mature trees was more strongly correlated with growth of seedlings than with growth of clones. Clones from resistant trees had later bud burst than clones from susceptible trees, and budworm defoliation of clones depended on the degree of synchrony between bud burst phenology and budworm larval feeding. Clones of resistant and susceptible mature trees showed similar responses of net photosynthetic rate to 2 years of budworm defoliation. We conclude that phenotypic differences in crown condition of Douglas-fir trees following western spruce budworm defoliation are influenced by tree genotype and that high growth rate and late bud burst phenology promote tree resistance to budworm defoliation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号