首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

2.
The object of this investigation was to study luteinizing hormone (LH) response to different doses of synthetic gonadotropin-releasing hormone (GnRH) in prepubertal gilts. Four crossbred prepubertal gilts, 128–134 days old and body weight 57–63 kg, were used in this study. Four doses, 0. 5, 25 and 125 μg, of GnRH were administered via a jugular vein catheter in a latin square design. Each treatment consisted of 3 injections at 90 min intervals. Frequent blood samples were taken during a period of 90 min before up to 90 min after treatment. Total LH responses were measured from post-treatment samples as the area under the curve above base level obtained from pre-treatment samples. A positive relationship between GnRH dose and LH release was obtained in all gilts, except for 1 treatment given to a gilt with high plasma level of oestradiol-17β on the day of treatment. This study has demonstrated the responsiveness of the pituitary gland by LH release to different doses of GnRH in 4.5-month-old prepubertal gilts.  相似文献   

3.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

4.
5.
6.
The effects of unilateral castration (UC) and induced unilateral cryptorchidism (UCR) on basal plasma luteinizing hormone (LH), follicle stimulating hormone (FSH) and testosterone, and on the responses of these hormones to gonadotropin releasing hormone (GnRH), were investigated in bulls altered at 3, 6 or 9 months of age. Blood plasma was collected before and after GnRH (200 micrograms) stimulation approximately 1 year following gonadal manipulation. Neither mean baseline concentrations nor GnRH-induced increases in plasma testosterone were altered (P greater than .1) by hemicastration or UCR (P greater than .1). Both mean baseline LH and GnRH-induced LH release were greater (P less than .05) in bulls altered at 3 months of age than in bulls altered at 9 months of age. UC increased (P less than .05) plasma LH response to GnRH over that observed in intact bulls, but not above that in UCR bulls. UCR had no detectable effect on either baseline concentrations or GnRH-stimulated LH release. FSH was increased (P less than .05) in hemicastrates, while UCR had a variable effect on peripheral FSH: FSH was reduced (P less than .05) in UCR animals altered at 3 months of age but increased (P less than .05) in UCR bulls altered at both 6 and 9 months of age when compared to FSH in intact bulls. The results indicate that, compared with intact bulls, UC bulls release increased amounts of both gonadotropins but similar amounts of testosterone in response to GnRH stimulation. UCR had a variable effect on FSH release and did not alter either LH or testosterone.  相似文献   

7.
配种前营养策略对母猪妊娠早期胚胎成活率的影响   总被引:1,自引:0,他引:1  
提高母猪妊娠早期胚胎成活率可以增加产仔数,提高经济效益。配种前营养对妊娠早期胚胎成活率具有重要的影响.这种影响的途径与卵泡发育和卵母细胞质量密切相关。本文综述了配种前营养.包括营养水平、能量来源、蛋白质、纤维等对后备母猪和哺乳母猪妊娠早期胚胎成活率的影响。  相似文献   

8.
Clinical and endocrinological responses to administration of gonadotropin releasing hormone analog (LH-RH-A) during the lactation period and postweaning in the sow were investigated. Plasma LH concentrations in lactating sows rose immediately after administration of LH-RH-A. However, in postweaning sows the increase of LH level was more slowly. Three of 5 postweaning sows came into estrus and ovulated after LH-RH-A treatment. One sow exhibited a distinct LH response, but her ovaries remained quiescent. The remaining one with feeble estrus for a short period became cystic ovaries. Thus, LH response to GnRH in the sow seems to be higher during early lactation than at 2 days postweaning.  相似文献   

9.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

10.
Two experiments were conducted to evaluate the effects of the immunization of gilts against ovarian steroids on ovulation rate and litter size. In Exp. 1, gilts (n = five gilts/treatment) at 165+/-1.6 d of age were immunized against either carrier (Control), androstenedione, or 17alpha-hydroxyprogesterone. Age at puberty and estrous cycle length averaged 208+/-5.5 (P = 0.67) and 20.3+/-2.8 d (P = 0.41), respectively, and were not affected by treatment. The androstenedione- and 17alpha-hydroxyprogesterone immunized gilts had higher (P < 0.02) ovulation rates than Controls (14.2, 14.2, and 11.4+/-0.8, respectively). Total pigs born (P = 0.66) and pigs born live (P = 0.65) for the androstenedione-treated group were not different from Controls. Gestation length was not different (P = 0.36) between any of the treatments and the Controls (115+/-0.9 d). Procedures used in Exp. 2 were similar to those in Exp. 1, except that only Control (n= 18) and 17alpha-hydroxyprogesterone (n = 16) treatments were included and only litter size at farrowing was measured. Total pigs and pigs born live were higher in the 17a-hydroxyprogesterone-treated gilts than in the Controls (12.6 vs 10.5+/-0.6, P < 0.02; and 11.4 vs 9.2+/-0.6; P < 0.01, respectively). Data from this study indicate that litter size in gilts can be increased by immunization against 17alpha-hydroxyprogesterone.  相似文献   

11.
Light horse mares, stallions, and geldings were used to 1) extend our observations on the thyrotropin releasing hormone (TRH) inhibition of GH secretion in response to physiologic stimuli and 2) test the hypothesis that stimulation of endogenous TRH would decrease the normal rate of GH secretion. In Exp. 1 and 2, pretreatment of mares with TRH (10 microg/kg BW) decreased (P < 0.001) the GH response to exercise and aspartate infusion. Time analysis in Exp. 3 indicated that the TRH inhibition lasted at least 60 min but was absent by 120 min. Administration of a single injection of TRH to stallions in Exp. 4 increased (P < 0.001) prolactin concentrations as expected but had no effect (P > 0.10) on GH concentrations. Similarly, 11 hourly injections of TRH administered to geldings in Exp. 5 did not alter (P > 0.10) GH concentrations either during the injections or for the next 14 h. In Exp. 5, it was noted that the prolactin and thyroid-stimulating hormone responses to TRH were great (P < 0.001) for the first injection, but subsequent injections had little to no stimulatory effect. Thus, Exp. 6 was designed to determine whether the inhibitory effect of TRH also waned after multiple injections. Geldings pretreated with five hourly injections of TRH had an exercise-induced GH response identical to that of control geldings, indicating that the inhibitory effect was absent after five TRH injections. Retrospective analysis of pooled, selected data from Exp. 4, 5, and 6 indicated that endogenous GH concentrations were in fact lower (P < 0.01) from 45 to 75 min after TRH injection but not thereafter. In Exp. 7, 6-n-propyl-2-thiouracil was fed to stallions to reduce thyroid activity and hence thyroid hormone feedback, potentially increasing endogenous TRH secretion. Treated stallions had decreased (P < 0.01) concentrations of thyroxine and elevated (P < 0.01) concentrations of thyroid-stimulating hormone by d 52 of feeding, but plasma concentrations of GH and prolactin were unaffected (P > 0.10). In contrast, the GH response to aspartate and the prolactin response to sulpiride were greater (P < 0.05) in treated stallions than in controls. In summary, TRH inhibited exercise- and aspartate-induced GH secretion. The duration of the inhibition was at least 1 h but less than 2 h, and it waned with multiple injections. There is likely a TRH inhibition of endogenous GH episodes as well. Reduced thyroid feedback on the hypothalamic-pituitary axis did not alter basal GH and prolactin secretion.  相似文献   

12.
Two experiments were conducted to investigate the response of the bovine corpus luteum to surges of luteinizing hormone (LH) induced by natural gonadotropin-releasing hormone (GnRH) administered twice during the same estrous cycle. In experiment 1, eight mature beef cows, each cow serving as her own control, were injected intravenously (iv) with saline on days 2 and 8 of the cycle (day of estrus = day 0 of the cycle), then with 100 micrograms GnRH on days 2 and 8 of the subsequent cycle. Jugular blood samples were taken immediately prior to an injection and at 15, 30, 45, 60, 120 and 240 min postinjection, to quantitate changes in serum luteinizing hormone. Blood was also collected on alternate days after an injection until day 16 of the cycle, to characterize changes in serum progesterone concentrations. Although exogenous GnRH caused release of LH on days 2 and 8 of the cycle, the quantity of LH released was greater on day 8 (P less than .025). Serum levels of progesterone after treatment with GnRH on day 8 of the cycle did not differ significantly from those observed during the control cycles of the heifers. Because exposure of the bovine corpus luteum to excess LH, induced by GnRH early during the estrous cycle, causes attenuated progesterone secretion during the same cycle, these data suggest that a second surge of endogenous LH may ameliorate the suppressive effect of the initial release of LH on luteal function. Duration of the estrous cycle was not altered by treatment (control, 20.4 +/- .5 vs. treated, 20.4 +/- .4 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The hCG induced ovulation in sows was studied by use of ultrasonography, and an investigation of the development and diversity of the zygotes/embryos was performed at 24 h after ovulation. Crossbred sows (N = 48) were weaned (day 0) and checked for heat twice daily from day 3 onwards. From day 4, the ovaries were transrectally scanned twice daily. On day 4, the sows were given an injection of 750 iu hCG i.m. and inseminated 27 +/- 2 h (X +/- SD) and 38 +/- 1 h later. From 38 to 48 h after the hCG injection, the ovaries were scanned at 60 to 90 min intervals. At 24 h after ovulation the oviducts were surgically flushed in 18 sows. Out of the 48 sows, 34 showed heat at 12-36 h after the hCG-treatment and 14 showed heat before the hCG treatment. In the former group of sows, 20 (59%) ovulated within the interval of 38 to 48 h after the hCG treatment, and the follicular size immediately before ovulation was 7.8 +/- 0.6 mm. Among the sows which showed heat before hCG treatment only 7 (50%) ovulated within the above interval and the preovulatory follicle size was larger (8.3 +/- 0.5, p < 0.05) than in the former group of sows, which showed heat after the hCG treatment. The flushing of 18 sows yielded a total of 243 ova, 70 (29%) 1-cell stages, 160 (66%) 2-cell stages and 13 (5%) 4-cell stages. A pronounced difference in the degree of variation in embryonic development was seen between sows: 4 animals yielded 1- to 4-cell stages, one exclusively 2-cell stage. In conclusion, the control of ovulation in sows by hCG treatment will affect the follicular growth and the exact timing of ovulation can not always be relied on. It is strongly recommended to use ultrasonography to monitor the time of ovulation if this parameter is important. Ova recovered at 24 +/- 1 h after the median time of ovulation revealed a pronounced diversity (1- to 4-cell stage) within sows. No obvious relation with this embryonic diversity and the follicular size at ovulation was seen in these data.  相似文献   

14.
Plasma steroid profiles following follicle-stimulating hormone (FSH) or equine chorionic gonadotropin (eCG) injection were studied in chronically gonadotropin releasing hormone agonist (GnRH-A)-treated cows. Follicular development and irINH secretion were stimulated by FSH or eCG injection. The plasma concentrations of estradiol-17 beta (E(2)) and testosterone (T) were markedly increased following eCG injection. However, significant increases of the plasma E(2) and T concentrations were not detected in FSH-treated cows. Ovulation of developed follicles were depended on the hCG injection in both groups. These results show: 1) Follicular response to an exogenous gonadotropin is still remained, 2) Ovulation of developed follicles is induced by hCG injection and 3) FSH and eCG cause disparate plasma steroid profiles, under the influence of repeated GnRH-A treatment.  相似文献   

15.
Ten trials involving 678 presumed prepuberal gilts (5.5 to 7.5 mo old) were conducted in North Carolina, Illinois and Missouri to evaluate the reproductive performance of gilts given a combination of 400 IU of pregnant mare's serum gonadotropin and 200 IU of human chorionic gonadotropin (P. G. 600). Gilts that were presumed to be prepuberal received P. G. 600 or no treatment (control) on the day of movement from finishing facilities to pens for breeding. Detection of estrus, with the aid of mature boars, was conducted daily for 28 d; gilts in estrus were mated naturally. Treatment with P. G. 600 increased the percentage in estrus within 7 (57.5 vs 40.9%) or 28 d (72.9 vs 59.5%); average interval to estrus was reduced (P less than .05) from 10.4 to 7.5 d. Farrowing rate (78.5 +/- 3.1%), number of pigs born alive (8.6 +/- .2) or dead (.26 +/- .06) and number of pigs weaned (8.0 +/- .2) were unaffected by treatment. Gilts that were heavier than the median for each farm were in heat sooner and more were detected in heat, but no other reproductive traits differed between heavy and light gilts. Overall, the results reveal that P. G. 600 was useful for induction of fertile estrus in prepuberal gilts.  相似文献   

16.
Ten stallions were used to determine if the stallion responds to administration of testosterone propionate (TP) with an increase in follicle stimulating hormone (FSH) secretion after administration of gonadotropin releasing hormone (GnRH) as has been previously observed for geldings and intact and ovariectomized mares. Five stallions were treated with TP (350 μg/kg of body weight) in safflower oil every other day for 11 days; control stallions received injections of safflower oil. The response to GnRH (1.0 μg/kg of body weight) was determined for all stallions before the onset of treatment (GnRH I) and at the end of treatment (GnRH II). Blood samples were also withdrawn daily from 3 days prior to treatment through GnRH II. Treatment with TP decreased (P<.10) concentrations of FSH in daily blood samples. However, treatment with TP did not affect (P>.10) the GnRH-induced secretion of FSH. Concentrations of luteinizing hormone (LH) decreased (P<.05) in daily blood samples averaged over both groups of stallions and were lower (P<.10) in TP-treated stallions than in controls during the latter days of treatment. We conclude that TP administration to stallions does not alter the FSH response to GnRH as has been observed for geldings and for mares of several reproductive states.  相似文献   

17.
The secretion of luteinizing hormone-releasing hormone (LHRH) and its temporal association with pulses of luteinizing hormone (LH) was examined in ovariectomized prepuberal gilts. Push-pull cannulae (PPC) were implanted within the anterior pituitary gland and LHRH was quantified from 10 min (200 microliters) perfusate samples. Serum LH concentrations were determined from jugular vein blood obtained at the midpoint of perfusate collection. Initial studies without collection of blood samples, indicated that LHRH secretion in the ovariectomized gilt was pulsatile with pulses comprised of one to three samples. However, most pulses were probably of rapid onset and short duration, since they comprised only one sample. Greater LHRH pulse amplitudes were associated with PPC locations within medial regions of the anterior pituitary close to the median eminence. In studies which involved blood collection, LH secretion was not affected by push-pull perfusion of the anterior pituitary gland in most gilts, however, adaptation of pigs to the sampling procedures was essential for prolonged sampling. There was a close temporal relationship between perfusate LHRH pulses and serum LH pulses with LHRH pulses occurring coincident or one sample preceding serum LH pulses. There were occasional LHRH pulses without LH pulses and LH pulses without detectable LHRH pulses. These results provide direct evidence that pulsatile LHRH secretion is associated with pulsatile LH secretion in ovariectomized gilts. In addition, PPC perfusion of the anterior pituitary is a viable procedure for assessing hypothalamic hypophyseal neurohormone relationships.  相似文献   

18.
19.
The effect of pregnant mare serum gonadotropin (PMSG) or estradiol cyclopentylpropionate (EC) on the induction of estrus, duration of estrus, and serum progesterone concentration after estrus was evaluated in 8 gilts with delayed puberty. Four gilts were given 500 IU of PMSG IM and 4 were given 2 mg of EC, IM. The inactive status of the ovaries at the time of treatment was verified by serum progesterone values of less than 0.5 ng/ml in serial samples collected before treatment. The 4 EC-treated gilts came into estrus at a mean of 3.5 days after treatment, but 1 of the gilts did not form corpora lutea. Three PMSG-treated gilts came into estrus at a mean of 4.0 days after treatment. The remaining PMSG-treated gilt remained anestrus and did not form corpora lutea. The mean duration of estrus in EC-treated gilts was 5.25 days compared with 2.0 days for PMSG-treated gilts (P less than 0.05). Serum progesterone concentrations were higher in PMSG-treated gilts than in EC-treated gilts at 8, 11, and 17 days after treatment (P less than 0.05).  相似文献   

20.
The effect of gonadotropin releasing hormone (GnRH) supplement was investigated in twenty eight FSH-treated buffalo cows. Animals were assigned to three groups; Group I: GnRH was given at standing heat (n=9), Group II: GnRH was given 8-12 hr after standing heat (n=8) and Group III: Control group with FSH alone (n=11). The responses (no. of corpora lutea and no. of anovulatory follicles), the number of recovered embryos and transferable embryos among the three groups were compared following slaughter of the animals on days 6 to 7 after first mating. The results indicated that the application of GnRH in FSH-treated animals gave no advantage by increasing in the number of ovulations or recovered embryos in all the treatment groups (P>0.05): 4.33 +/- 3.35 vs 3.88 +/- 4.09 vs 4.5 +/- 2.68 for corpora lutea, and 2.33 +/- 2.24 vs 2.0 +/- 3.20 vs 1.91 +/- 2.74 for recovered embryos respectively. GnRH treatment tended to reduce the number of anovulatory follicles but the finding was not significant; 6.11 +/- 3.3 vs 7.38 +/- 4.84 vs 10.18 +/- 2.74 follilcles (P>0.05). The supplementation of GnRH at 8-12 hr after standing heat seemed to produce more transferable embryos than those of treated at standing heat or the controls 1.63 +/- 2.77 vs 1.25 +/- 1.67 vs 1.36 +/- 1.69 embryos respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号