首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 5% solution of dextrose in water containing 50 mg of guaifenesin, 0.25 mg of xylazine, and 1 mg of ketamine/ml was infused IV at the rate of 2.2 ml X kg-1 X hour-1 in dogs. Heart rate, systemic vascular resistance, mean arterial blood pressure, rate-pressure product, and arterial oxygen tension were not altered significantly from baseline values during 2 hours of anesthesia. Cardiac index was significantly (P less than 0.05) decreased from base-line values. Hypoventilation resulted in increased arterial carbon dioxide tension and decreased arterial pH. After the dogs were given glycopyrrolate, cardiac index returned to base line, and heart rate, mean arterial pressure, and rate-pressure product were significantly greater (P less than 0.05) than base-line values.  相似文献   

2.
Swine were anesthetized with a 5% solution of dextrose in water containing 50 mg of guaifenesin, 1 mg of ketamine, and 1 mg of xylazine X ml-1 (G-K-X) infused IV at a rate of 2.2 ml X kg-1 X hr-1. Mean arterial blood pressure and systemic vascular resistance were significantly increased from base-line values throughout the 2 hours of G-K-X infusion. Cardiac index decreased significantly initially, but returned to near base line at 30 minutes. Fifteen minutes after G-K-X infusion was discontinued, cardiac index was not significantly different from base line. Heart rate decreased significantly from base line 90 minutes after infusion of G-K-X began and remained so throughout the study. However, the mean heart rate remained within the acceptable range for swine. Rate-pressure product was not significantly altered. The PaCO2 decreased, and arterial pH increased significantly from base line, supporting our clinical impression that pigs breathe well when anesthetized with G-K-X. We conclude that G-K-X is a satisfactory combination of drugs for induction and maintenance of surgical anesthesia in healthy swine for a period of 2 hours.  相似文献   

3.
Eight ponies were anesthetized with a solution containing 50 mg of guaifenesin, 1 mg of ketamine, and 0.5 mg of xylazine X ml-1 of 5% dextrose in water. Anesthesia was induced by IV injection (1.1 ml X kg-1), followed by continuous IV infusion at 2.75 ml X kg-1 X hr-1. Heart rate, rate-pressure product, mean pulmonary artery pressure, and standard bicarbonate were not significantly changed throughout the study. Systolic, diastolic, and mean arterial pressures and left ventricular stroke work index were significantly decreased at 5 and 15 minutes after a bolus of the anesthetic solution was injected. Systolic blood pressure returned to within the base-line range at 30 minutes, but diastolic and mean arterial pressures were significantly decreased throughout the study. Cardiac index and arterial pH were decreased at 5 minutes only. Systemic vascular resistance was significantly decreased 60 minutes after bolus injection was given. Hypoventilation, as indicated by increased PaCO2, occurred 5 minutes after bolus injection was given.  相似文献   

4.
Our experience of the administration of xylazine and ketamine for an induction of halothane inhalation anaesthesia in dogs is described in this paper. After this procedure had been evaluated in 10 test dogs, the xylazine-ketamine induction was used for different surgical interventions in 160 patients. After joint i.m. atropine (0.05 mg/kg) and xylazine (1.5-2 mg/kg) pre-medication general anaesthesia of the dogs was induced by an i.v. administration of 1% ketamine (2 mg/kg). After intubation and anaesthetizer connection halothane vapours had to be applied for 2 to 8 minutes at a 2.5% to 3.5% concentration to induce the tolerance stage of anaesthesia. Then the anaesthesia level was maintained by an application of halothane vapours at a 0.5 to 1.5% concentration (Tab. I). In addition to an evaluation of the anaesthesia proper, breathing-rate, inspiratory and expiratory volumes, internal body temperature were recorded, ECG was made and venous blood samples were taken to evaluate acid-base balance changes. The processing of the obtained data (Figs. 1 to 5, Tab. II) revealed a transient breathing attenuation after the xylazine-ketamine induction and partly compensated respiratory acidosis. On the basis of our results this tested method can replace the traditional thiopental induction associated with the risks of cardiopulmonary depression, or even blood circulation stoppage.  相似文献   

5.
Effects of ketamine, xylazine, and a combination of ketamine and xylazine were studied in 12 male Pekin ducks (7 to 12 weeks old; mean [+/- SD] body weight, 3.1 +/- 0.3 kg). After venous and arterial catheterization and fixation of a temperature probe in the cloaca, each awake duck was confined, but not restrained, in an open box in a dimly lit room. Blood pressure and lead-II ECG were recorded. Three arterial blood samples were collected every 15 minutes over a 45-minute period (control period) and were analyzed for pHa, PaCO2 and PaO2. After the control period, each duck was assigned at random to 1 of 3 drug groups: (1) ketamine (KET; 20 mg/kg of body weight, IV), (2) xylazine (XYL; 1 mg/kg, IV), and (3) KET + XYL (KET 20 mg/kg and XYL, 1 mg/kg; IV). Measurements were made at 1, 5, 10, 15, 30, 45, 60, and 90 minutes after drug administration. All ducks survived the drug study. Cloacal temperature was significantly (P less than or equal to 0.05) increased above control cloacal temperature at 90 minutes after the administration of ketamine, and from 10 through 90 minutes after administration of ketamine plus xylazine. In ducks of the KET group, pHa, PaCO2, and PaO2, remained unchanged after administration of the drug. In ducks of the XYL group, pHa and PaO2 decreased significantly (P less than or equal to 0.05) from control values for all time points up to and including 15 minutes after drug administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Anesthesia induced by use of a combination of xylazine, ketamine, and halothane, under conditions of spontaneous and mechanically controlled ventilation, was evaluated in 5 llamas positioned in dorsal recumbency. Using chronically implanted catheters, systemic arterial blood pressure, pulmonary arterial pressure, right atrial pressure, heart rate and rhythm, cardiac output, blood pH and gas tensions, body temperature, and respiratory rate were measured before anesthesia induction (baseline), throughout the anesthetic period, and for 1 hour into the recovery period. During anesthesia, llamas undergoing spontaneous ventilation developed hypercapnia and respiratory acidosis. Cardiovascular function was decreased during both types of ventilation. The combination of xylazine, ketamine, and halothane in various doses and 2 ventilation procedures (spontaneous and controlled) provided a reliable method for general anesthesia in llamas, but marked cardiovascular depression developed during anesthesia maintenance with halothane. Spontaneous ventilation resulted in potentially clinically important respiratory acidosis.  相似文献   

7.
OBJECTIVE: To evaluate the use of xylazine and ketamine for total i.v. anesthesia in horses. ANIMALS: 8 horses. PROCEDURE: Anesthetic induction was performed on 4 occasions in each horse with xylazine (0.75 mg/kg, i.v.), guaifenesin (75 mg/kg, i.v.), and ketamine (2 mg/kg, i.v.). Intravenous infusions of xylazine and ketamine were then started by use of 1 of 6 treatments as follows for which 35, 90, 120, and 150 represent infusion dosages (microg/kg/min) and X and K represent xylazine and ketamine, respectively: X35 + K90 with 100% inspired oxygen (O2), X35 + K120-(O2), X35 + K150-(O2), X70 + K90-(O2), K150-(O2), and X35 + K120 with a 21% fraction of inspired oxygen (ie, air). Cardiopulmonary measurements were performed. Response to a noxious electrical stimulus was observed at 20, 40, and 60 minutes after induction. Times to achieve sternal recumbency and standing were recorded. Quality of sedation, induction, and recovery to sternal recumbency and standing were subjectively evaluated. RESULTS: Heart rate and cardiac index were higher and total peripheral resistance lower in K150-(O2) and X35 + K120-air groups. The mean arterial pressure was highest in the X35 + K120-air group and lowest in the K150-(O2) group (125 +/- 6 vs 85 +/- 8 at 20 minutes, respectively). Mean Pa(O2) was lowest in the X35 + K120-air group. Times to sternal recumbency and standing were shortest for horses receiving K150-(O2) (23 +/- 6 minutes and 33 +/- 8 minutes, respectively) and longest for those receiving X70 + K90-(O2) (58 +/- 28 minutes and 69 +/- 27 minutes, respectively). CONCLUSIONS AND CLINICAL RELEVANCE: Infusions of xylazine and ketamine may be used with oxygen supplementation to maintain 60 minutes of anesthesia in healthy adult horses.  相似文献   

8.
On 74 occasions, 54 horses and 6 foals were anesthetized with xylazine and ketamine or xylazine, guaifenesin, and ketamine, with or without butorphanol. On 64 occasions, anesthesia was prolonged for up to 70 minutes (34 +/- 15 min) by administration of 1 to 9 supplemental IV injections of xylazine and ketamine at approximately a third the initial dosage. All horses except 5 were positioned in lateral recumbency, and oxygen was insufflated. In adult horses, the time from induction of anesthesia to the first supplemental xylazine and ketamine injection was 13 +/- 4 minutes and the time between supplemental injections was 12.1 +/- 3.7 minutes. These results were consistent with predicted plasma ketamine concentration calculated from previously published pharmacokinetic data for ketamine in horses. Respiratory and heart rates and coccygeal artery pressure remained consistent for the duration of anesthesia. The average interval between the last injection of ketamine and assumption of sternal position was approximately 30 minutes, and was the same regardless of the number of supplemental injections. The time to standing was significantly longer (P less than 0.05) in horses given 2 supplemental injections, compared with those not given any or only given 1, but was not longer in horses given 3 supplemental injections. Recovery was considered unsatisfactory in 5 horses, but did not appear to be related to prolongation of anesthesia.  相似文献   

9.
OBJECTIVE: To compare the cardiopulmonary effects of administration of a solution of xylazine, guaifenesin, and ketamine (XGK) or inhaled isoflurane in mechanically ventilated calves undergoing surgery. ANIMALS: 13 male calves 2 to 26 days of age. Procedures-In calves in the XGK group, anesthesia was induced (0.5 mL/kg) and maintained (2.5 mL/kg/h) with a combination solution of xylazine (0.1 mg/mL), guaifenesin (50 mg/mL), and ketamine (1.0 mg/mL). For calves in the isoflurane group, anesthesia was induced and maintained with isoflurane in oxygen. The rates of XGK infusion and isoflurane administration were adjusted to achieve suitable anesthetic depth. All calves received 100% oxygen and were mechanically ventilated to maintain end-tidal carbon dioxide concentrations from 35 to 40 mm Hg and underwent laparoscopic bladder surgery through an abdominal approach. Cardiopulmonary variables were measured before induction and at intervals up to 90 minutes after anesthetic induction. RESULTS: The quality of induction was excellent in all calves. The XGK requirements were 0.57 +/- 0.18 mL/kg and 2.70 +/- 0.40 mL/kg/h to induce and maintain anesthesia, respectively. Heart rate was significantly lower than baseline throughout the anesthetic period in the XGK group. Systolic arterial blood pressure was significantly higher in the XGK group, compared with the isoflurane group, from 5 to 90 minutes. Cardiac index was lower than baseline in both groups. Differences between groups in cardiac index and arterial blood gas values were not significant. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of XGK resulted in excellent anesthetic induction and maintenance with cardiopulmonary alterations similar to those associated with isoflurane in mechanically ventilated calves.  相似文献   

10.
Objective  The study was undertaken to evaluate the use of ketamine, xylazine, and diazepam along with a local retrobulbar nerve block for routine phacoemulsification in the dog.
Animals  Ten clinically healthy mixed-breed dogs of either sex, weighing between 10 and 15 kg.
Procedures  Ten mixed-breed dogs were selected for unilateral cataract removal by phacoemulsification. Standard preoperative preparations for cataract surgery were followed. Pre-anesthetic medication consisted of atropine sulfate (0.02 mg/kg, SC). Anesthesia was induced by xylazine HCl (1.0 mg/kg, IM) followed by ketamine (5.0 mg/kg, IM). Anesthesia was maintained subsequently with IV ketamine and diazepam to effect and depth of anesthesia was assessed clinically by pedal reflex and jaw reflex. After induction of anesthesia, a retrobulbar nerve block was performed using 2 mL of 2% lignocaine. Eye position was graded after retrobulbar block and IOP was examined preoperative, post-anesthetic, 6 h postoperative and 24 h after surgery. Phacoemulsification was performed using the phaco-chop technique and an intraocular lens was placed. Anesthetic recovery and postoperative recovery following surgery was recorded.
Result  The exposure of the globe in all the dogs was adequate; the desired central fixation of the eye was obtained and surgery could be performed uneventfully. The mean IOP recorded after induction of anesthesia was 15.75 ± 0.82, which was not significantly ( P  > 0.01) different from pre-anesthetic values (14.85 ± 0.85).
Conclusion  Phacoemulsification was successfully performed with this anesthetic regimen without encountering major intraoperative or anesthetic complications.  相似文献   

11.
The carotid and pulmonary arteries were catheterised in six pigs anaesthetised with thiopentone sodium and halothane. A minimum of five days was allowed to elapse before the investigation. The carotid artery pressure, pulmonary artery pressure, cardiac output, arterial pH, PO2, PCO2, plasma glucose and lactate were measured before and after intravenous injection of xylazine (1 mg kg-1) and ketamine 10 mg kg-1). Complete analgesia was produced for 10 minutes in all pigs but by 25 minutes all animals responded to a painful stimulus. The cardiac output and arterial PO2 were significantly decreased for 30 minutes and 10 minutes, respectively. The total vascular resistance was significantly increased. No statistically significant changes occurred in the other variables measured.  相似文献   

12.
The anesthetic and cardiopulmonary effects of midazolam, ketamine and medetomidine for total intravenous anesthesia (MKM-TIVA) were evaluated in 14 horses. Horses were administered medetomidine 5 microg/kg intravenously as pre-anesthetic medication and anesthetized with an intravenous injection of ketamine 2.5 mg/kg and midazolam 0.04 mg/kg followed by the infusion of MKM-drug combination (midazolam 0.8 mg/ml-ketamine 40 mg/ml-medetomidine 0.1 mg/ml). Nine stallions (3 thoroughbred and 6 draft horses) were castrated during infusion of MKM-drug combination. The average duration of anesthesia was 38 +/- 8 min and infusion rate of MKM-drug combination was 0.091 +/- 0.021 ml/kg/hr. Time to standing after discontinuing MKM-TIVA was 33 +/- 13 min. The quality of recovery from anesthesia was satisfactory in 3 horses and good in 6 horses. An additional 5 healthy thoroughbred horses were anesthetized with MKM- TIVA in order to assess cardiopulmonary effects. These 5 horses were anesthetized for 60 min and administered MKM-drug combination at 0.1 ml/kg/hr. Cardiac output and cardiac index decreased to 70-80%, stroke volume increased to 110% and systemic vascular resistance increased to 130% of baseline value. The partial pressure of arterial blood carbon dioxide was maintained at approximately 50 mmHg while the arterial partial pressure of oxygen pressure decreased to 50-60 mmHg. MKM-TIVA provides clinically acceptable general anesthesia with mild cardiopulmonary depression in horses. Inspired air should be supplemented with oxygen to prevent hypoxemia during MKM-TIVA.  相似文献   

13.
ObjectiveTo compare anaesthesia induced with either alfaxalone or ketamine in horses following premedication with xylazine and guaifenesin.Study designRandomized blinded cross-over experimental study.AnimalsSix adult horses, five Standardbreds and one Thoroughbred; two mares and four geldings.MethodsEach horse received, on separate occasions, induction of anaesthesia with either ketamine 2.2 mg kg?1 or alfaxalone 1 mg kg?1. Premedication was with xylazine 0.5 mg kg?1 and guaifenesin 35 mg kg?1. Incidence of tremors/shaking after induction, recovery and ataxia on recovery were scored. Time to recovery was recorded. Partial pressure of arterial blood oxygen (PaO2) and carbon dioxide (PaO2), arterial blood pressures, heart rate (HR) and respiratory rates were recorded before premedication and at intervals during anaesthesia. Data were analyzed using Wilcoxon matched pairs signed rank test and are expressed as median (range).ResultsThere was no difference in the quality of recovery or in ataxia scores. Horses receiving alfaxalone exhibited a higher incidence of tremors/shaking on induction compared with those receiving ketamine (five and one of six horses respectively). Horses recovered to standing similarly [28 (24–47) minutes for alfaxalone; 22 (18–35) for ketamine] but took longer to recover adequately to return to the paddock after alfaxalone [44 (38–67) minutes] compared with ketamine [35 (30–47)]. There was no statistical difference between treatments in effect on HR, PaO2 or PaCO2 although for both regimens, PaO2 decreased with respect to before premedication values. There was no difference between treatments in effect on blood pressure.Conclusions and clinical relevanceBoth alfaxalone and ketamine were effective at inducing anaesthesia, although at induction there were more muscle tremors after alfaxalone. As there were no differences between treatments in relation to cardiopulmonary responses or quality of recovery, and only minor differences in recovery times, both agents appear suitable for this purpose following the premedication regimen used in this study.  相似文献   

14.
The effects of intramuscular injections of xylazine (2 mg/kg)-ketamine (15 mg/kg) [X-K15], and xylazine (2 mg/kg)-ketamine (5 mg/kg)-butorphanol (0.22 mg/kg) [X-K5-B] were compared in atropinized (0.05 mg/kg) miniature pigs (pigs). Both combinations induced the anesthesia for more than 1 hr, however X-K5-B induced the more potent and well balanced anesthesia as compared with X-K15, although the amount of ketamine was reduced to one third. The duration of loss of pedal reflex, an indicator of surgical anesthesia, in X-K5-B (62 +/- 13 min) was significantly (P less than 0.05) longer than in X-K15 (28 +/- 19 min). In addition, X-K5-B was accompanied by loss of laryngeal reflex in all pigs. Recovery from anesthesia in X-K5-B was much smoother than in X-K15, and the administration of yohimbine (0.05 mg/kg) could rapidly and smoothly reverse the anesthesia induced by X-K5-B, although it was accompanied by a transient fall in blood pressure and tachycardia. The combination of xylazine, ketamine and butorphanol appears to be a relatively safe and widely available anesthesia for the period of one hour in pigs.  相似文献   

15.
Seven Thoroughbred horses were castrated under total intravenous anesthesia (TIVA) using propofol and medetomidine. After premedication with medetomidine (5.0 μg/kg, intravenously), anesthesia was induced with guaifenesin (100 mg/kg, intravenously) and propofol (3.0 mg/kg, intravenously) and maintained with constant rate infusions of medetomidine (0.05 μg/kg/min) and propofol (0.1 mg/kg/min). Quality of induction was judged excellent to good. Three horses showed insufficient anesthesia and received additional anesthetic. Arterial blood pressure changed within an acceptable range in all horses. Decreases in respiratory rate and hypercapnia were observed in all horses. Three horses showed apnea within a short period of time. Recovery from anesthesia was calm and smooth in all horses. The TIVA-regimen used in this study provides clinically effective anesthesia for castration in horses. However, assisted ventilation should be considered to minimize respiratory depression.  相似文献   

16.
The aim of this study was to find a safe and reliable alternative to Immobilon for the immobilization of (feral) cattle. A combination of xylazine, zolazepam-tiletamine and ketamine was tested in Limousin cattle, Scottish Highland cattle, and American bison. Bodyweight, induction time, arterial O2 saturation and the total downtime were measured. Arterial blood was taken for pH and blood gas analysis. The animals were then injected with atipamezole and the recovery time was recorded. A combination of 500 mg zolazepam, 500 mg tiletamine, 500 mg xylazine, and 1000 mg (10 ml) ketamine, administered in a dosage of 1 ml per 100-150 kg bodyweight (depending on the species), proved to be most reliable and effective. The combination resulted in a fast immobilization. In all animals slight respiratory depression was seen, which indicates that oxygen suppletion may be needed for long-lasting immobilization. After reversal of the xylazine component, almost all animals recovered within 4 minutes. No long term adverse effects were reported by the owners.  相似文献   

17.
The anaesthetic and physiological effects of a combination of 40 micrograms medetomidine with 2.5 ketamine, 5.0 or 7.5 mg/kg administered intramuscularly were compared with the effects of a combination of 1 mg/kg xylazine and 15 mg/kg ketamine. All the combinations rapidly induced an anaesthetic state that permitted endotracheal intubation, with the absence of the pedal reflex and with good muscle relaxation, and induced bradycardia that was less pronounced as the dose of ketamine was increased. All the combinations produced a decrease in respiratory rate. Increasing the dose of ketamine combined with medetomidine resulted in a very significant prolongation of the duration of anaesthesia, the duration of muscle relaxation and the arousal time. The duration of the anaesthetic effects of 40 micrograms/kg medetomidine with 5 mg/kg ketamine was comparable to that provided by the recommended xylazine/ketamine combination but the period of muscle relaxation was significantly longer. The recovery from medetomidine/ketamine took longer than recovery from xylazine/ketamine but there were fewer side effects.  相似文献   

18.
OBJECTIVE: To evaluate effects of infusion of guaifenesin, ketamine, and medetomidine in combination with inhalation of sevoflurane versus inhalation of sevoflurane alone for anesthesia of horses. DESIGN: Randomized clinical trial. ANIMALS: 40 horses. PROCEDURE: Horses were premedicated with xylazine and anesthetized with diazepam and ketamine. Anesthesia was maintained by infusion of guaifenesin, ketamine, and medetomidine and inhalation of sevoflurane (20 horses) or by inhalation of sevoflurane (20 horses). A surgical plane of anesthesia was maintained by controlling the inhaled concentration of sevoflurane. Sodium pentothal was administered as necessary to prevent movement in response to surgical stimulation. Hypotension was treated with dobutamine; hypoxemia and hypercarbia were treated with intermittent positive-pressure ventilation. The quality of anesthetic induction, maintenance, and recovery and the quality of the transition to inhalation anesthesia were scored. RESULTS: The delivered concentration of sevoflurane (ie, the vaporizer dial setting) was significantly lower and the quality of transition to inhalation anesthesia and of anesthetic maintenance were significantly better in horses that received the guaifenesin-ketamine-medetomidine infusion than in horses that did not. Five horses, all of which received sevoflurane alone, required administration of pentothal. Recovery time and quality of recovery were not significantly different between groups, but horses that received the guaifenesin-ketamine-medetomidine infusion required fewer attempts to stand. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in horses, the combination of a guaifenesin-ketamine-medetomidine infusion and inhalation of sevoflurane resulted in better transition and maintenance phases while improving cardiovascular function and reducing the number of attempts needed to stand after the completion of anesthesia, compared with inhalation of sevoflurane.  相似文献   

19.
ObjectiveTo investigate the impact of a change in body position on blood gases and arterial blood pressures in foals anesthetized with guaifenesin, ketamine, and xylazine.Study designProspective, randomized experimental study.AnimalsTwelve Quarter Horse foals, age of 5.4 ±0.9 months and weighing 222 ± 48 kg.MethodsFoals were anesthetized with guaifenesin, ketamine, and xylazine for 40 minutes in lateral recumbency and then assigned to a change in lateral recumbency after hoisting (Group 1, n = 6), or no change (Group 2, n = 6). Oxygen 15 L minute?1 was insufflated into the endotracheal tube throughout anesthesia. Arterial blood pressure, heart rate, respiratory rate (fR), inspired fraction of oxygen (FiO2), and end-tidal carbon dioxide (Pe’CO2) were measured every 5 minutes. Arterial pH and blood gases [arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2)] were measured at 10, 30, and 40 minutes after induction, and 5 minutes after hoisting. Alveolar dead space ventilation and PaO2/FiO2 were calculated. Two repeated measures models were used. All hypothesis tests were two-sided and significance level was α = 0.05. All values are presented as least square means ± SE.ResultsValues at time-matched points from the two groups were not significantly different so they were combined. Arterial partial pressure of oxygen decreased significantly from 149 ± 14.4 mmHg before hoisting to 92 ± 11.6 mmHg after hoisting (p=0.0013). The PaO2/FiO2 ratio decreased from 275 ± 30 to 175 ± 24 (p=0.0055). End-tidal carbon dioxide decreased significantly from 48.7 ± 1.6 to 44.5 ± 1.2 mmHg (p=0.021). Arterial partial pressure of carbon dioxide, blood pressures and heart rates measured 5 minutes after hoisting were not different from measurements obtained before hoisting.Conclusion and clinical relevanceHoisting decreased PaO2 in anesthetized healthy foals. Administration of supplemental oxygen is recommended to counter the decrease in oxygenation and PaO2 measurement is necessary to detect early changes.  相似文献   

20.
Thirty-two anesthetic episodes used a combination of tiletamine-zolezepam (50 mg/ml each), ketamine (80 mg/ml), and xylazine (20 mg/ml) at various dosages for routine diagnostic and minor surgical procedures in 13 captive cheetahs (Acinonyx jubatus). The mean dosage (0.023 +/- 0.003 ml/kg) provided rapid induction with a single i.m. injection along with safe predictable working time, good muscle relaxation, and analgesia. Yohimbine administration subsequently accelerated smooth and rapid recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号