首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary Cabbage hybrid seeds are commercially produced by means of self-incompatibility. This system may show some instability mainly under tropical conditions, where cytoplasmic male sterility can be an alternative approach for hybrid seeds production. However, cabbage hybrids holding Ogura male-sterile cytoplasm show some irregularities during development. By assessing some characteristics during the growing cycle of male-sterile cabbage hybrids and comparing them to genomic similar male-fertile ones and to the most common cabbage hybrid cultivated in Brazil, it was observed that the male-sterile hybrids had the same vigour, uniformity, number of leaves, resistance to Xanthomonas campestris pv. campestris, and earliness as their male-fertile counterparts and performed better than the commercial check hybrid for some of these characteristics. Although male-sterile hybrids showed yellowing of leaves, some parental combinations succeeded in overcoming or strongly reducing this cytoplasmic effect.Abbreviations dat days after transplanting - CMS Cytoplasmic Male Sterility - CNPH National Centre for Vegetable Crops Research  相似文献   

2.
Summary Pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids based on the A1 cytoplasmic-nuclear male-sterile (CMS) lines are more susceptible to smut (Tolyposporium penicillariae Bref.) than open-pollinated varieties. Seventy eight pairs of hybrids, made onto male-sterile (A) lines and their counterpart maintainer (B) lines, were evaluated to examine the effects of male sterility and genetic resistance of parental lines on the smut severity of hybrids. The A-line hybrids had higher smut severity and lower selfed seedset than the counterpart B-line hybrids, indicating that it is the CMS-mediated male sterility rather than the A1 cytoplasm per se that caused greater smut severity of A-line hybrids. However, with the use of resistant parental lines even male-sterile hybrids of A-lines, in several cases, were as resistant as some of the highly resistant male-fertile hybrids of B-lines. It would be possible to produce smut resistant hybrids (< 10% severity) on A-lines, albeit in low frequency, even if only one parent of a hybrid were resistant. However, the probability of producing such hybrids would be higher when both parents were resistant to smut. Thus, improvement in smut resistance of parental lines and fertility restoration ability of pollinators would provide the most effective genetic approach to smut disease management in hybrids.Submitted as JA No 1737 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

3.
Summary To determine the distribution and geographic specificity of sterility maintainers in pearl millet, Pennisetum americanum (L.) Leeke, 428 diverse pearl millet germplasm accessions representing variation from 12 countries were crossed with a male-sterile line 5141A. The F1 hybrids were classified as male-fertile or male-sterile based on the seed set on bagged ear heads and an other morphology. Among these, 87 (20.3%) were classified as male-fertile, 32 (7.5%) as male-sterile, 282 (65.9%) as segregating for male-fertile/male-sterile and 27 (6.3%) behaved as male-fertile in the rainy and male-sterile in the postrainy season. Restorer lines were distributed in all the countries studied except Cameroon and USSR. Maintainer lines were observed from six countries but were concentrated in India. These maintainer lines differ from one another in several morphological and agronomic characters such as flowering, plant height, spike length and grain size. They may prove to be useful sources of material for generating new male-sterile lines. The restorers can be used to produce commercial hybrids.Submitted as J.A. No. 719 by the International Crops Research Institute for the Semi-Arid Topics (ICRISAT).  相似文献   

4.
Ogura male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. In this study, in order to gain better understanding of the variation and evolution of the restoration of the fertility (Rf) gene for Ogura male-sterile cytoplasm, the nucleotide sequence of the orf687 homologue in the Japanese wild radish (Raphanus sativus var. hortensis f. raphanistroides Makino) was analyzed using an F2 population made with a cross between a Japanese wild radish plant containing the Rf gene and ‘Uchiki-Gensuke’ (a maintainer of Ogura-male sterility). Segregation of male-fertile/-sterile plants in the F2 generation suggested that another unidentified Rf gene unlinked to orf687 exists in the Japanese wild radish. The genotype of orf687 was determined for each F2 plant by Southern hybridization with an orf687 gene probe, mismatch-specific endonuclease digestion of PCR products, and direct sequencing of a PCR product. Genotyping revealed that some fertility-restored plants are homozygotic for the ‘Uchiki-Gensuke’ type orf687 allele, supporting the idea that another gene different from orf687 also functions as an Rf gene for Ogura male-sterility. Protein analysis using an antibody raised against the Ogura-specific ORF138 protein suggests a mechanism of fertility restoration by the unidentified Rf similar to that by orf687. Sequence analysis of orf687 from a Japanese wild radish plant and ‘Uchiki-Gensuke’ revealed that both orf687 regions encode a mitochondrially-targeted protein consisting of 687 amino acids with 16 PPR motifs. Comparison of the deduced amino acid sequences with those of the known orf687 sequences from ‘Yuan hong’ and ‘Kosena’ containing Rf and recessive one (rf), respectively, showed that three unique amino acid replacements are present in ORF687 of the Japanese wild radish. Two of the three replacements, that from lysine to isoleucine at position 232 and from asparagine to asparate at position 240, confer negative charges to the protein. Since the Rf of ‘Yuan hong’ was reported to have a unique replacement that confers a negative charge to ORF687 (from asparagine to aspartate at position 170), it is proposed that the amino acid replacements conferring a negative charge to ORF687 are important for determining the status of the Rf/rf gene.  相似文献   

5.
Summary Alloplasmic male-sterile Brassica oleracea L. was synthesized in a backcrossing program through amphidiploid Raphanobrassica by using Early Scarlet Globe radish (Raphanus sativus L.) as the donor of cytoplasm and B. oleracea broccoli and cabbage as recurrent pollen parents. Persistence of radish chromosomes and high female sterility were encountered in the first four backcrosses. Following use of colchiploid 4x broccoli as pollen parent, a BC5 plant was obtained that had 2n=3x+1=28 chromosomes, improved seed set, and no radish traits. The BC6 with recurrent 2x broccoli contained male-sterile plants with 2n=18 or 19 chromosomes, increased seed set, and broccoli morphology. Subsequent generations segregated for male-sterile and restored male-fertile plants, some with variable development of stamens and pollen. Leaf color of the alloplasmic plants, especially seedlings, was lighter green than normal.  相似文献   

6.
The orf138 gene, which is specific to Ogura male-sterile cytoplasm, was analysed in mitochondrial DNA (mtDNA) of the wild radish, Raphanus raphanistrum, by polymerase chain reaction (PCR), Southern hybridization and sequencing. The effect of R. raphanistrum cytoplasm on the expression of male sterility was also examined in progeny with R. sativus. A PCR-aided assay and Southern hybridization revealed that three out of six strains analysed included plants with orf138. The sequence of wild type orf138 was same as that of Ogura, except for one or two nucleotide substitutions. Southern hybridization showed a novel mtDNA configuration in R. raphanistrum, in addition to the normal and Ogura types identical to those in R. sativus. Among interspecific hybrids, all the F1 had normal pollen fertility. In the F2 progeny between female wild plants having orf138 and the maintainer of Ogura male sterility, male-sterile plants were segregated, fitting the ratio of 3 fertile: 1 sterile plant. R. raphanistrum has cytoplasm that induces male sterility in radishes, and contains a dominant fertility restorer gene.  相似文献   

7.
To identify DNA markers linked to a fertility restorer (Rf) genefor Ogura cytoplasmic male sterility in radish (Raphanus sativus L.),a non-radioactive, amplified fragment length polymorphism (AFLP) analysiswas performed on bulked DNA samples from male-sterile and male-fertileradishes. Ten male-fertile and 10 male-sterile plants selected arbitrarilyfrom an F2 population made by selfing of F1 plant from a crossbetween a male-sterile (`MS-Gensuke') plant and a restorer (`Comet') plantwere used as material. Using 32 AFLP primer pairs, one AFLP fragment(AFLP190) which is specific to the bulked DNA samples from male-fertileF2 plants was identified. AFLP190 was characterized by molecularcloning and nucleotide sequencing, and was converted to a sequence-taggedsite (STS) marker, STS190. A linkage analysis performed in 126individuals of two independent F2 populations showed tight linkageof STS190 to the Rf gene. The rate of recombination between themarker and Rf was estimated to be less than 1%, making STS1901.2 cM from the gene.  相似文献   

8.
Summary Barriers to interspecific hybridization in Trifolium were investigated by manipulation of mentor pollen treatments, ploidy levels, and compatibility and male sterility systems. Crosses involving the addition of mentor pollen produced fewer seeds and hybrids than crosses involving normal pollination. Lower seed set with mentor pollen was deduced to result from the use of less viable pollen, approximately half the pollen having been killed by alcohol. Pollinations at the diploid level resulted in more hybrids than at the tetraploid level, perhaps because genes for male sterility produced higher female sterility in the tetraploids. The self-compatible stock produced more seeds, mostly selfs, than the self-incompatible stock, but produced more hybrids only in one cross, T. pratense L. × T. diffusum Ehrh. The use of male-sterile female parents reduced selfing but produced fewer hybrids than male-fertile female parents. Techniques of this study were designed to affect prefertilization barriers, but the lack of effect may indicate that postfertilization barriers in Trifolium are of greater importance.Journal Article No. 98-3-208 of Kentucky Agricultural Experiment Station. Published with approval of the Director.  相似文献   

9.
Summary Light and fluorescence microscopy were used to study coenocytic microspore germination from male-sterile (ms1 ms1) soybean plants. Anther squashes from male-sterile plants revealed that a low frequency of natural coenocytic microspore germination occurred in male-sterile anthers of four independent lines; [ms1-North carolina (T260H),ms1-Urbana (T266H),ms1-Tonica (T267H), andms1-Ames (T268H)]. Abnormalities such as giant tubes, branched tubes, tubes with swollen areas, and multiple tubes were observed from coenocytic microspores from all four lines. The Urbana line, however, demonstrated a higher percentage of coenocytic microspore germination than did the other three lines. Flowers of the Urbana line from both malefertile and male-sterile plants, as well as gynoecia pollinated with coenocytic microspores from sterile plants, were used for in vivo studies. Pollen-tube growth appeared normal in male-fertile plants. In contrast, coenocytic microspore tubes rarely were observed in gynoecia from male-sterile plants or in gynoecia from malefertile plants that had been artificially cross-pollinated withms1 ms1 plants. Few tubes from coenocytic microspores were observed in the vicinity of the micropylar region. A low frequency of seed set was achieved in the greenhouse on Urbana male-sterile plants grown in the absence of male-fertile plants. Thus, we believe either that some gametes from coenocytic microspores are able to participate in fertilization at low frequency or that apomixis occurs inms1 ms1 plants.Joint contribution: Agricultural Research Service, U.S. Department of Agriculture, and Journal Paper No. J-12310 of the Iowa Agriculture and Home Economics Experiment Station, Ames IA, 50011 USA. Project 2471.  相似文献   

10.
K. N. Rai  R. P. Thakur 《Euphytica》1995,83(3):225-231
Summary High ergot (Claviceps fusiformis Loveless) susceptibility of pearl millet (Pennisetum glaucum (L.) R. Br.) hybrids has often been associated with the A1 cytoplasm of male-sterile lines (A-lines). To understand the underlying basis of this association and to examine the prospects of breeding ergot-resistant hybrids, we evaluated 56 hybrids and their 15 parental lines for ergot reaction and selfed seedset for 2 years in disease nurseries at ICRISAT Asia Center. Hybrids were made by crossing seven pollen parents (2 susceptible and 5 resistant) onto two resistant and two susceptible A-lines, and their four corresponding maintainer lines (B-lines). A-lines had no selfed seedset while B-lines had 32–75% selfed seedset. Hybrids of A-lines had significantly less selfed seedset than the hybrids of the corresponding B-lines. The reduced seedset of A-lines and their hybrids, however, was not always accompanied by significantly higher ergot susceptibility. Highly resistant hybrids were obtained where both A-lines and pollen parents were highly resistant, regardless of male fertility levels of the hybrids. Thus, although the A1 cytoplasm, by its reduction of male fertility, had a large and significant effect in increasing ergot severity of hybrids, the contribution of nuclear genetic factors of female parents was about 1.8 times larger than that of the cytoplasm.Submitted as JA No. 1776 by the International Crops Research Institute for the Semi Arid Tropies.  相似文献   

11.
B. Feil  U. Weingartner  P. Stamp 《Euphytica》2003,130(2):163-165
There is public concern about the consequences of pollen dispersal from genetically modified (GM) crops. There lease of viable pollen from GM maize can be controlled by growing mixtures of cytoplasmic male-sterile plants and male-fertile non-transformed pollinator plants. Our experiments indicate that such associations can bring about grain yields as high or even higher than those produced by pure male-fertile maize crops, especially when the male-sterile component is pollinated non-isogenically. The grain yield benefits from cytoplasmic malesterility and xenia as well as the fact that seed of male-sterile varieties can be produced cheaply and reliably in large quantities would facilitate the implementation of the proposed system in agricultural practice. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
D. J. Ockendon 《Euphytica》1982,31(2):325-331
Summary A total of 31 S-alleles was found in a survey of 197 cabbage plants representing 11 cultivars of diverse type. Most of these S-alleles also occurred in either kale or Brussels sprouts, but five of them have not been found previously and apparently occur only in cabbage. A more detailed study of five cultivars of spring cabbage showed only 12 S-alleles in all, with 6–10 S-alleles in four older cultivars and only 3 S-alleles in the newer more highly selected cultivar. S2 was by far the commonest S-allele, as it is in B. oleracea as a whole. The highly recessive alleles S5 and S15 were not particularly common in cabbage and this may partly explain why the sib problem in F1 hybrids is apparently less in cabbage than in Brussels sprouts. Three cases were found in which an S-allele was completely recessive in both the stigma and the pollen. The problems for the breeder created by this rather unusual situation are discussed.  相似文献   

13.
Summary The shoot fly, Atherigona soccata is an important pest of sorghum, and host plant resistance is one of the most effective components for managing this pest. Most of the hybrids grown in India based on milo cytoplasm (A1 cytoplasm) are highly susceptible to shoot fly. Therefore, the present studies were undertaken to evaluate different male-sterile cytoplasms (CMS) for their relative susceptibility to sorghum shoot fly. Oviposition and deadheart formation were significantly lower on the maintainer lines as compared to the corresponding male-sterile lines. Among the cytoplasms tested, A4M cytoplasm showed antixenosis for oviposition and suffered lower deadheart formation than the other cytoplasms tested. The A4G1 and A4M cytoplasms suffered lower deadhearts in tillers than the other cytoplasms. Recovery following shoot fly damage in A4M, A3, and A2 cytoplasms was better than in the other cytoplasms tested. The larval and pupal periods were longer and male and female pupal weights lower in A4M and A4VzM CMS backgrounds compared to the other CMS systems. Fecundity and antibiosis indices on CMS lines were lower than on the B-lines. The A4M cytoplasm was found to be relatively resistant to sorghum shoot fly, and can be exploited for developing shoot fly-resistant hybrids for sustainable crop production in future.  相似文献   

14.
Pearl millet (Pennisetum glaucum (L.) R. Br.) cultivars for marginal, arid environments need to combine the adaptation to stress conditions of indigenous landraces with an improved yield potential and disease resistance, to allow them to both perform well in farmers fields and to meet the requirements for cultivar release. This paper evaluates landrace-based topcross hybrids (adapted landraces crossed on high-yielding male-sterile lines), as a quick and efficient way of achieving this objective. Topcross hybrids showed a consistent increase in biomass production across all test environments, including the harsh arid zone environments. Depending upon the plant type of the male-sterile used to make the hybrid, this was expressed as increased grain yield only, or increased grain and fodder yields. The downy mildew (Sclerospora graminicola) reaction of the topcross hybrids was determined by the reaction of the male-sterile line used, with the resistant male-sterile producing resistant topcross hybrids and vice-versa. Topcrossing adapted landraces on high-yielding male-sterile lines thus provides an opportunity to improve disease resistance and grain and/or fodder yields, with no apparent loss of adaptation to the marginal environments in which the landraces have evolved.ICRISAT Journal Article no. 1575  相似文献   

15.
Male fertility of F1 interspecific hybrid plants derived from crosses between cytoplasmic male-sterile Brassica campestris in Diplotaxis muralis cytoplasm and 147 B. napus cultivars was Investigated. F1, plants obtained, from crosses with the B. napus cultivars‘Mangum’and‘Hinchu’were male-sterile while F1 plants derived from all other crosses were male-fertile. This indicated that these two cultivars carried maintainer genes far the male-sterility-inducing cytoplasm of D. muralis. Sterility was stable In plants derived from backcrosses of male-sterile F; plants with‘Mangun and‘Hinchu’but the seed set of backcross plants was low. With restorer genes readily available in B. napus, these findings could lead to the development of a new cytoplasmic male sterility system for the breeding of B. napus hybrid cultivars.  相似文献   

16.
S. Tokumasu 《Euphytica》1976,25(1):151-159
Summary Anther development of male-fertile and male-sterile plants in Pelargonium crispum was anatomically examined. Three cultivars, i.e., Lemon crispum, Crispum minor and Prince Rupert, were used. Lemon crispum and Crispum minor are male-fertile, whereas Prince Rupert is male-sterile. The tapetum in every cultivar examined behaved like an amoeba. The tapetal cells of the anther form plasmodial masses. Then, the plasmodial masses fuse producing a periplasmodium. The periplasmodium degenerates and finally disappears. There are no differences in tapetal behaviour between fertile and sterile anthers. In the sterile anthers the endothecium and lip cells do not develop sufficiently. Young microspores show normal growth at early stages. After the completion of their cell wall formation, however, the microspores in the sterile anthers lose their cytoplasm and become empty. On the other hand, the microspores in the fertile anthers increase the volume of their cytoplasm and become fertile pollen grains.  相似文献   

17.
Sorghum head bug, Calocoris angustatus Lethiery is one of the most important pests of grain sorghum in India. Head bug damage increases the severity of grain molds, which renders the grain unfit for human consumption. Therefore, we studied the gene action for resistance to head bugs and grain molds in a diverse array of male-sterile lines and testers in a line × tester mating design under natural infestation. Mean squares for parents, parents vs crosses, lines, testers, and lines × testers were significant for head bug damage and grain mold severity. General combining ability (GCA) effects were significant and negative for ICSA 88019 for head bug damage, and ICSA 88019 and ICSA 88020 for grain molds (except for ICSA 88020 in 1993). General combining ability effects were positive for ICSA 42 and 296 A. GCA effects of lines and testers for head bug damage and grain mold severity were in the same direction (+ve or −ve). Head bug damage in the grain was significantly correlated with grain mold severity. Testers IS 8891, IS 15107, and TAM 2566 (with colored grain and less susceptibility to molds) produced mold-resistant hybrids in combination with all the male-sterile lines, while the reverse was true in the case of Swarna and ICSV 112. Resistance to head bugs showed dominance to partial dominance type of gene action, while in the case of grain molds, it showed dominance to over dominance. Resistance to these pests is governed by both additive and nonadditive types of gene action. The implications of these results are discussed in relation to need for crop improvement in sorghum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary To determine the origin of Ogura male sterile cytoplasm in radish (Raphanus sativus L.), wild and cultivated radishes were crossed. Three types of progeny resulted from the F1 hybrids between the wild radish from Kushikino with Ogura-type mtDNA and the cultivars (Uchiki-Gensuke or Comet). The segregation patterns of the male sterility were compared with those of Ogura cytoplasm. The male sterility induced in the F1 hybrid was maintained by crossing with Uchiki-Gensuke, that maintains Ogura male sterility. In the two types of progeny, in which Comet (a restorer of Ogura cytoplasm) was used as one of the parents, both fertile and sterile plants segregated at the predicted ratio on the assumption that a single dominant fertility restoring gene exists in the restorer. From these results, we concluded that the Ogura cytoplasm is identical to that of the wild radish, and the former originated in a population of Japanese wild radish.  相似文献   

19.
Summary Scab caused by Gibberella zeae Petch., in common wheat, is one of the most severe diseases in China. A source population C0, bred for scab resistance, was developed through three cycles of multiple-parent crossing and intercrossing by means of the dominant male-sterile gene Ta1 (Ms2), according to Wu's scheme. Phenotypic recurrent selection methods for increasing the resistance to scab-infection of spikelets and seeds with the male-sterile plants were carried out simultaneously in Nanjing and Shanghai and at Jianyang, Fujian Province, for three cycles. The generations from C0 to C3 and two check cultivars were evaluated, using a randomized block design, under conditions of an artificially induced epidemic of scab during 1988–1990. The results indicate that there were significant differences in the resistance to scab between these generations. On average, the percentages of diseased spikelets and seeds of the male-fertile plants were reduced by 9% and 10%, respectively. The frequency of resistant plants was distinctly enhanced by recurrent selection. Analysis of variance showed that no significant differences existed between cycles of recurrent selection in agronomic characters such as plant height, spikes per plant, spike length, numbers of spikelets and seeds per spike, weight of seeds per spike and 100-kernel weight, days to heading and to maturity. Except for plant height, most of these traits tended to be slightly improved with improvement of resistance in the gene pool. The variance for resistance in the generations was decreased under selection. Recurrent selection for scab resistance using the dominant male-sterile gene Ta1 (Ms2) was both an effective and feasible breeding method for producing this character in wheat.  相似文献   

20.
Summary Variation and covariation for agronomic and digestibility traits of silage maize are reported from a compilation of 22 years of experiments with standard sheep. Genotype effects of DOM and DCF were highly significant, even when genotypes were nested in earliness groups or brown-midrib hybrids discarded (Table 2). The genetic variance of crude fiber content was low, but the variance of the DCF was high. The genetic variance of DOM was about 4 times lower than genetic variance of DCF, but broad sense heritability of DOM was higher because of lower residual variance (Table 3). Genetic correlations between grain or crude fiber content and DOM had similar absolute values, 0.65, so each of these two traits was an important but not the unique determinant of silage maize quality. There was no correlation between DCF and grain or crude fiber content. Yield was not related to DOM or DCF within each group of earliness, allowing some quality improvement without agronomic drift (Table 4). Except for late hybrids, most of DOM differences between groups of earliness came from lowering of minimum value, while maximum values were similar. It was the contrary for DCF, with similar minimum values for all groups (Table 5). There was no obvious correlation between year of registration of hybrids and DOM or DCF, but extra new variation seemed obtained only for low values (Figs 1, 2; Table 6). IVDOM according to the APC process was a poor predictor of DOM, especially when brown-midrib hybrids and earliness effects were discarded; but because heritability of this trait was similar to DOM heritability, such enzymatic processes could probably be used to avoid drift towards poor DOM with hybrids bred for higher stalk strength.Abbreviations APC Amylase Pepsine Cellulase solubility - DDM sheep digestibility of dry matter - DOM sheep digestibility of organic matter - DCF sheep digestibility of crude fiber - DM dry matter - IVDCW in vitro digestibility of cell wall - IVDDM in vitro digestibility of dry matter - IVDOM in vitro digestibility of organic matter - NIRS near infra-red reflectance spectroscopy - NDF neutral detergent fiber - bm1-brown-midrib-1 allele, bm3-brown midrib-3 allele  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号