首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of orally administered ketoconazole on plasma cortisol concentration in dogs with hyperadrenocorticism was evaluated. Every 30 minutes from 0800 hours through 1600 hours and again at 1800 hours, 2000 hours, and 0800 hours the following morning, 15 clinically normal dogs and 49 dogs with hyperadrenocorticism had plasma samples obtained and analyzed for cortisol concentration. The mean (+/- SD) plasma cortisol concentration for the initial 8-hour testing period was highest in 18 dogs with adrenocortical tumor (5.3 +/- 1.6 micrograms/dl), lowest in 15 control dogs (1.3 +/- 0.5 micrograms/dl), and intermediate in 31 dogs with pituitary-dependent hyperadrenocorticism (PDH; 3.4 +/- 1.2 micrograms/dl). Results in each of the 2 groups of dogs with hyperadrenocorticism were significantly (P less than 0.05) different from results in control dogs, but not from each other. The same cortisol secretory experiment was performed, using 8 dogs with hyperadrenocorticism (5 with PDH; 3 with adrenocortical tumor) before and after administration at 0800 hours of 15 mg of ketoconazole/kg of body weight. Significant (P less than 0.05) decrease in the 8-hour mean plasma cortisol concentration (0.9 +/- 0.2 microgram/dl) was observed, with return to baseline plasma cortisol concentration 24 hours later. Twenty dogs with hyperadrenocorticism (11 with PDH, 9 with adrenocortical tumor) were treated with ketoconazole at a dosage of 15 mg/kg given every 12 hours for a half month to 12 months. The disease in 2 dogs with PDH failed to respond to treatment, but 18 dogs had complete resolution of clinical signs of hyperadrenocorticism and significant (P less than 0.05) reduction in plasma cortisol responsiveness to exogenous adrenocorticotropin (ACTH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The purpose of this study was to determine the sensitivity of dogs with hyperadrenocorticism to treatment with the adrenocorticolytic agent mitotane. Specifically, we looked for differences in response to treatment using this drug in dogs with adrenocortical tumors (adrenal tumor hyperadrenocorticism, ATH) vs those with pituitary-dependent hyperadrenocorticism (PDH). For inclusion in this study, each dog must have had clinical signs, data base laboratory abnormalities, and endocrine screening test results consistent with the diagnosis of hyperadrenocorticism. Further, each dog had to have been treated for at least 6 months with mitotane and have histologic evidence for adrenocortical or pituitary neoplasia (all dogs were necropsied). Thirteen dogs with ATH (8 carcinomas, 5 adenomas) were identified. The ages and body weights of these 13 dogs were computer-matched to 13 dogs with PDH. All dogs were initially treated with approximately 50 mg of mitotane/kg/d of body weight. Reexaminations were performed after 7, 30, 90, and 180 days of treatment. Individual dosages varied widely after the initial 5 to 12 days of treatment. The mean (+/- SD) dose of mitotane (mg/kg/d) for the first 7 days of treatment was 47.5 +/- 9.4 for dogs with ATH vs 45.7 +/- 11.9 for dogs with PDH. The mean plasma cortisol concentrations 1 hour after ACTH administration at the 7-day recheck were significantly higher in dogs with ATH (502 +/- 386 nmol/L) than in dogs with PDH (88 +/- 94 nmol/L).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In 20 healthy experimental dogs the 24 hour urinary corticoid excretion as measured by cortisol radioimmunoassay on two consecutive days varied from 0.5 to 3.3 nmol/kg/24 hours and from 0.3 to 3.6 nmol/kg/24 hours. In 20 dogs with otherwise proven spontaneous hyperadrenocorticism these values varied from 4.4 to 35.7 nmol/kg/24 hours and from 3.6 to 26.8 nmol/kg/24 hours respectively. Corticoid/creatinine ratios in morning urine samples of 28 healthy pet dogs were 1.2 to 6.9 X 10(-6). In 27 dogs with spontaneous hyperadrenocorticism all ratios exceeded the range observed in the healthy pet dogs.  相似文献   

4.
Thyroxine (T4), 3,5,3'-triiodothyronine (T3), and cortisol frequently are quantified in canine serum or plasma samples to aid in the diagnosis of hypothyroidism, hypoadrenocorticism, and hyperadrenocorticism. Many laboratories have established reliable references values for concentrations of these hormones in blood of clinically normal animals. However, nonpathologic factors that affect thyroidal and adrenocortical secretion may lead to misinterpretation of test results when values for individual animals are compared with reference values. The objective of the study reported here was to identify effects of age, sex, and body size (ie, breed) on serum concentrations of T3, T4, and cortisol in dogs. Blood samples were collected from 1,074 healthy dogs, and serum concentrations of the iodothyronines and cortisol were evaluated for effects of breed/size, sex, and age. Mean (+/- SEM) serum concentration of T4 was greater in small (2.45 +/- 0.06 micrograms/dl)- than in medium (1.94 +/- 0.04 micrograms/dl)- or large (2.03 +/- 0.03 micrograms/dl)-breed dogs, the same in females (2.11 +/- 0.04 micrograms/dl) and males (2.08 +/- 0.04 micrograms/dl), and greater in nursing pups (3.04 +/- 0.05 micrograms/dl) than in weanling pups (1.94 +/- 0.05 micrograms/dl), rapidly growing dogs (1.95 +/- 0.04 micrograms/dl), and young adult (1.90 +/- 0.06 micrograms/dl), middle-aged adult (1.72 +/- 0.05 micrograms/dl), or old adult (1.50 +/- 0.05 micrograms/dl) dogs. Dogs greater than 6 years old had lower mean serum T4 concentration than did dogs of all other ages, except middle-aged adults. Mean serum T3 concentration in medium-sized dogs (1.00 +/- 0.01 ng/ml) was greater than that in small (0.90 +/- 0.01 ng/ml)- and large (0.88 +/- 0.01 ng/ml)-breed dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Samples were obtained from clinically normal dogs before and after ACTH stimulation and dexamethasone suppression tests. The test kit Enzymun-Test (Boehringer Mannheim) for determining cortisol concentrations in human plasma was used in connection with the analyser system Enzymun-Test (Boehringer Mannheim) System ES300 following the manufacturer's instructions. The intra-assay and inter-assay coefficients of variation were 1.28% and 5.64%, respectively. The mean recovery when assaying samples with a cortisol content of more than 100 nmol/L was 95.41%, but this percentage decreased in samples with lower cortisol levels. The sensitivity of the assay was 2.76 nmol/L. The results of the ACTH stimulation and dexamethasone suppression tests were similar to those published previously. The ELISA method evaluated allows a precise and sensitive determination of cortisol concentrations in canine plasma samples. The major drawback observed was the loss of accuracy at low cortisol concentrations. Since the assay tends then to report lower cortisol concentrations, the generally accepted concentration of 40 nmol/L may not be suitable as the cutoff value in dexamethasone suppression tests.  相似文献   

6.
The results of adrenocorticotropin (ACTH) stimulation and low-dose dexamethasone suppression tests (LDDST) were evaluated retrospectively in eight dogs with clinical signs of hyperadrenocorticism arising from functional adrenocortical tumours, and compared with the results from 12 dogs with confirmed pituitary-dependent hyperadrenocorticism (PDH). The post-ACTH cortisol concentration in the dogs with adrenocortical tumours ranged from 61 to 345-6 nmol/litre (median 251.5 nmol/litre) and they were within the reference range (150 to 450 nmol/litre) in five and unexpectedly low (< 150 nmol/litre) in three dogs. Both the basal and post-ACTH cortisol concentrations were significantly lower in the dogs with adrenocortical neoplasia than in the dogs with PDH. Eight hours after the LDDST, only two of six dogs with adrenocortical tumours had a cortisol concentration above 30 nmol/litre, and the median resting, three, and eight-hour cortisol concentrations were 31.5, 23.0, and 22.7 nmol/litre respectively. There was no significant cortisol suppression during the LDDST, although interpretation was complicated by the low cortisol concentrations, but two dogs showed a pattern of apparent suppression. Two dogs with adrenal tumours showed a diagnostically significant increase in 17-OH-progesterone concentration in response to ACTH although their cortisol concentrations did not increase greatly. These results differ from previous reports of the response of functional adrenal tumours to dynamic endocrine tests.  相似文献   

7.
Background: Measurement of salivary cortisol is a useful diagnostic test for hypercortisolism (HC) in humans. Objectives: To determine whether measurement of salivary cortisol concentration is a practical alternative to plasma cortisol to diagnose HC, to validate the use of salivary cortisol, and to examine the effect of time of day and sampling location on salivary cortisol. Animals: Thirty healthy dogs and 6 dogs with HC. Methods: Prospective, observational clinical trial including healthy volunteer dogs and dogs newly diagnosed with HC. Salivary and plasma cortisol concentrations were measured with an immunoassay analyzer. Intra‐ and interassay variability, linearity, and correlation between salivary and plasma cortisol concentrations were determined. Results: The required 300 μL of saliva could not be obtained in 88/326 samples from healthy dogs and in 15/30 samples from dogs with HC. The intra‐assay variability for measurement of salivary cortisol was 5–17.7%, the interassay variability 8.5 and 17.3%, and the observed to expected ratio 89–125%. The correlation (r) between salivary and plasma cortisol was 0.98. The time of day and location of collection did not affect salivary cortisol concentrations. Dogs with HC had significantly higher salivary cortisol values than healthy dogs (10.2 ± 7.3 nmol/L versus 1.54 ± 0.97 nmol/L; P < .001). Conclusions and Clinical Importance: The ROCHE Elecsys immunoassay analyzer correctly measured salivary cortisol in dogs. However, a broad clinical application of the method seems limited, because of the large sample volume required.  相似文献   

8.
Serum concentrations of 17-hydroxyprogesterone and cortisol were measured before and after the administration of exogenous adrenocorticotrophic hormone (ACTH) to three groups of dogs: 27 healthy dogs (group 1), 19 dogs with non-adrenal illness (group 2) and 46 dogs with hyperadrenocorticism (group 3). The median (range) post-ACTH concentrations of 17-hydroxyprogesterone were 5.0 (22.2 to 16.8), 6.9 (2.0 to 36.2) and 14.4 (1.7 to 71) nmol/litre in groups 1, 2 and 3, respectively. There were no significant differences in the basal or post-ACTH concentrations of cortisol or 17-hydroxyprogesterone between groups 1 and 2. The post-ACTH concentrations of 17-hydroxyprogesterone in group 3 were significantly (P<0.001) greater than those in groups 1 and 2 combined. The area under the receiver operating curve (ROC) for the post-ACTH concentration of cortisol (0.94) was significantly greater than that for the post-ACTH concentration of 17-hydroxyprogesterone (0.76). Using a two-graph ROC analysis, a cut-off of 8.5 nmol/litre was found to maximise both the sensitivity and specificity of the post-ACTH concentration of 17-hydroxyprogesterone for the diagnosis of hyperadrenocorticism at 71 per cent. With a cut-off of 4.5 nmol/litre the sensitivity increased to 90 per cent but the specificity decreased to 40 per cent; with a cut-off of 16.7 nmol/litre the specificity increased to 90 per cent but the sensitivity decreased to 47 per cent.  相似文献   

9.
Dogs with portosystemic encephalopathy (PSE) are known to develop pituitary-dependent hyperadrenocorticism, but there have been no reports on the plasma protein binding of cortisol in these dogs. Since the liver is involved in the synthesis of corticosteroid-binding globulin (CBG) and other transport proteins for cortisol, the binding characteristics of these proteins and thus the biologically-active free fraction of cortisol might be altered in dogs with PSE. We investigated the total concentration of cortisol and the free fraction and the free cortisol concentration in plasma of thirty-two dogs with PSE due to inherited portosystemic shunts or chronic active hepatitis with cirrhosis. We found a significantly higher free fraction (14.7 ± 5.8%, P<0.0001) and free cortisol concentration (26.3 ± 23.1 nM, P<0.001) in these dogs than in healthy controls (8.2 ± 2.3% and 9.2 ± 7.2 nM, respectively). Moreover, basal concentrations of total cortisol in the dogs with PSE were higher than in the healthy controls (190 ± 146 nM v. 107 ± 65, P<0.01). The per cent free cortisol in plasma was not significantly correlated with the concentration of albumin or the total cortisol in plasma. We conclude that there is decreased binding of cortisol in plasma of dogs with PSE due to decreased hepatic synthesis of cortisol binding proteins. The presence of increased concentrations of free cortisol in these dogs indicates that their basal pituitary-adrenocortical activity was increased, probably due to aberrant neurotransmission in brain centers associated with pituitary function, as a result of hepatic encephalopathy.  相似文献   

10.
The relationship between salivary and plasma levels of total and free cortisol was monitored in 97 male piglets, aged two to four weeks, subjected to castration. Samples were taken 10 minutes before (basal value) as well as one, two, three, four and 24 hours post castration and at the same time intervals from a control group of 17 animals which did not undergo surgery. Simultaneously to blood (indwelling catheter) withdrawing saliva was collected by two cotton swabs. Cortisol levels were measured by radioimmunoassay (RIA). A highly significant increase in total, free and salivary cortisol was found within the first four hours after castration compared to the control group. The percentage increase one hour after castration above basal values was highest in free plasma cortisol (21.08 +/- 2.03 nmol/l vs. 61.26 +/- 4.16 nmol/l; 290.6%), and lowest in total plasma cortisol (177.33 +/- 9.69 nmol/l vs. 374.09 +/- 18.21 nmol/l; 211.0%), whereas salivary cortisol showed an 255.7% increase (10.46 +/- 1.03 nmol/l vs. 26.75 +/- 1.93 nmol/l). Total cortisol included 11.9-16.4% free cortisol. Salivary cortisol concentration was between 5.9% and 7.5% of the total plasma cortisol concentration. The highest correlation between total plasma cortisol and salivary cortisol occurred one hour after castration (r = 0.57; p < 0.01). The correlation between free and salivary cortisol was lowest for basal values (r = 0.27; p < 0.05), whereas correlations for the remaining time points were highly significant (0.41 < or = r < or = 0.61; p < 0.01). For the control group significant correlations were found between salivary and total plasma cortisol (0.58 < or = r < or = 0.89; p < 0.05) and between free and salivary cortisol (0.63 < or = r < or = 0.92; p < 0.05). The present work indicates that the measurement of salivary levels of cortisol reflects the concentration of this hormone in plasma samples of piglets.  相似文献   

11.
Serum concentrations of total and free thyroxine (T4 and FT4, respectively), 3,5,3'-triiodothyronine (T3), 3,3',5'-triiodothyronine (reverse T3) were measured in 42 dogs with hyperadrenocorticism, and were compared with values determined in clinically normal dogs. Mean total T4 concentration in dogs with hyperadrenocorticism (14.3 nmol/L) was significantly (P less than 0.001) lower than the normal value (25.7 nmol/L), with 38% of the dogs having low serum T4 concentration. Although 16 (38%) of the 42 dogs with hyperadrenocorticism had a high FT4 fraction, indicative of diminished serum T4 binding, normal FT4 concentration was found in only 6 of the 16 dogs (38%) with low total T4 values. Mean serum T3 concentration in dogs with hyperadrenocorticism (0.79 nmol/L) was also significantly (P less than 0.001) lower than the normal value (1.16 nmol/L), with 39% of the dogs having T3 values below the normal range. Individual T3-to-T4 and T3-to-FT4 ratios, indices of T3 production and/or clearance, were above the normal range in 29 and 24% of dogs with hyperadrenocorticism, respectively. Mean reverse T3 concentration in dogs with hyperadrenocorticism (0.17 nmol/L) was also significantly (P less than 0.001) lower than the normal mean value (0.39 nmol/L), with 48% of the dogs having reverse T3 values below the normal range. Of the 21 dogs in which all iodothyronines were measured, 6 (29%) had undetectable values for all hormones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
OBJECTIVE: To evaluate serum 17-hydroxyprogesterone (17-OHP) concentration measurement after administration of ACTH for use in the diagnosis of hyperadrenocorticism in dogs. DESIGN: Prospective study. ANIMALS: 110 dogs. PROCEDURE: Serum 17-OHP concentrations were measured before and after ACTH stimulation in 53 healthy dogs to establish reference values for this study. Affected dogs had pituitary-dependent (n = 40) or adrenal tumor-associated (12) hyperadrenocorticism or potentially had atypical hyperadrenocorticism (5; diagnosis confirmed in 1 dog). In affected dogs, frequency interval and borderline and abnormal serum 17-OHP concentrations after ACTH stimulation were determined. Serum cortisol concentrations were assessed via low-dose dexamethasone suppression and ACTH stimulation tests. RESULTS: In healthy dogs, serum 17-OHP concentration frequency intervals were grouped by sex and reproductive status (defined as < 95th percentile). Frequency intervals of serum 17-OHP concentrations after ACTH stimulation were < 77, < 2.0, < 3.2, and < 3.4 ng/mL (< 23.3, < 6.1, < 9.7, and < 10.3 nmol/L) for sexually intact and neutered females and sexually intact and neutered males, respectively. In 53 dogs with confirmed hyperadrenocorticism, serum cortisol concentrations after ACTH stimulation and 8 hours after administration of dexamethasone and serum 17-OHP concentrations after ACTH stimulation were considered borderline or abnormal in 79%, 93%, and 69% of dogs, respectively. Two of 5 dogs considered to have atypical hyperadrenocorticism had abnormal serum 17-OHP concentrations after ACTH stimulation. CONCLUSIONS AND CLINICAL RELEVANCE: Serum 17-OHP concentration measurement after ACTH stimulation may be useful in the diagnosis of hyperadrenocorticism in dogs when other test results are equivocal.  相似文献   

13.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

14.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

15.
Plasma thyroxine (T4), 3,5,3'-triiodothyronine (T3), total protein, and albumin concentrations were measured in 15 dogs both before and after completion, and in an additional 16 dogs before and 24 dogs after completion, of a long-distance sled dog race. The plasma T4 concentration (mean +/- SD) decreased significantly from 18.2 +/- 5.4 nmol/L before to 14.3 +/- 3.5 nmol/L after the race in dogs evaluated at both times and decreased significantly from 21.8 +/- 10.5 nmol/L before to 15.8 +/- 4.9 nmol/L after the race in dogs sampled only before or only after the race. The mean plasma T3 concentrations in dogs measured twice decreased significantly from 1.20 +/- 0.48 nmol/L before to 0.74 +/- 0.42 nmol/L after the race, as well as in dogs measured either before (1.28 +/- 0.36 nmol/L) or after (0.69 +/- 0.28 nmol/L) the race, respectively. Plasma total protein and albumin concentrations decreased significantly after completion of the race. No significant change was noted in 4 control dogs that did not compete in the race and were tested during a similar time period. The plasma concentrations of T4 and T3 were lower than the normal reference range established for this laboratory in 23 and 39%, respectively, of Alaskan sled dogs tested before the race. Plasma thyroid hormone concentrations frequently are below normal in conditioned Alaskan sled dogs and are further reduced after prolonged submaximal exercise.  相似文献   

16.
The purpose of this study was to validate a thyroid-stimulating hormone (TSH) assay in a model of equine hypothyroidism. Thyrotropin-releasing hormone (TRH) stimulation tests were performed in 12 healthy adult mares and geldings, aged 4 to greater than 20 years. before and during administration of the antithyroid drug propylthiouracil (PTU) for 6 weeks. Serum concentrations of equine TSH, total and free thyroxine (T4), and total and free triiodothyronine (T3) were measured. Before PTU administration, mean +/- standard deviation baseline concentrations of TSH were 0.40 +/- 0.29 ng/mL. TSH increased in response to TRH, reaching a peak concentration of 0.78 +/- 0.28 ng/mL at 45 minutes. Total and free T4 increased from 12.9 +/- 5.6 nmol/L and 12.2 +/- 3.5 pmol/L to 36.8 +/- 11.4 nmol/L and 23.1 +/- 5.9 pmol/L, respectively, peaking at 4-6 hours. Total and free T3 increased from 0.99 +/- 0.51 nmol/L and 2.07 +/- 1.14 pmol/L to 2.23 +/- 0.60 nmol/l and 5.78 +/- 1.94 pmol/L, respectively, peaking at 2-4 hours. Weekly measurements of baseline TSH and thyroid hormones during PTU administration showed that total and free T, concentrations fell abruptly and remained low throughout PTU administration. Total and free T4 concentrations did not decrease dramatically until weeks 5 and 4 of PTU administration, respectively. A steady increase in TSH concentration occurred throughout PTU administration, with TSH becoming markedly increased by weeks 5 and 6 (1.46 +/- 0.94 ng/mL at 6 weeks). During weeks 5 and 6 of PTU administration, TSH response to TRH was exaggerated, and thyroid hormone response was blunted. Results of this study show that measurement of equine TSH in conjunction with thyroid hormone measurement differentiated normal and hypothyroid horses in this model of equine hypothyroidism.  相似文献   

17.
OBJECTIVE: To compare adrenal gland stimulation achieved following administration of cosyntropin (5 microg/kg [2.3 microg/lb]) IM versus IV in healthy dogs and dogs with hyperadrenocorticism. DESIGN: Clinical trial. Animals-9 healthy dogs and 9 dogs with hyperadrenocorticism. PROCEDURES: In both groups, ACTH stimulation was performed twice. Healthy dogs were randomly assigned to receive cosyntropin IM or IV first, but all dogs with hyperadrenocorticism received cosyntropin IV first. In healthy dogs, serum cortisol concentration was measured before (baseline) and 30, 60, 90, and 120 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was measured before and 60 minutes after cosyntropin administration. RESULTS: In the healthy dogs, serum cortisol concentration increased significantly after administration of cosyntropin, regardless of route of administration, and serum cortisol concentrations after IM administration were not significantly different from concentrations after IV administration. For both routes of administration, serum cortisol concentration peaked 60 or 90 minutes after cosyntropin administration. In dogs with hyperadrenocorticism, serum cortisol concentration was significantly increased 60 minutes after cosyntropin administration, compared with baseline concentration, and concentrations after IM administration were not significantly different from concentrations after IV administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that in healthy dogs and dogs with hyperadrenocorticism, administration of cosyntropin at a dose of 5 microg/kg, IV or IM, resulted in equivalent adrenal gland stimulation.  相似文献   

18.
A prospective study was undertaken to compare intravenous tetracosactrin at doses of 5 microg/kg and 250 microg for diagnosing hyperadrenocorticism in dogs. Both healthy dogs and dogs with pituitary-dependent hyperadrenocorticism were evaluated with the two doses of the drug, and serum cortisol concentrations were compared at 60 minutes post-stimulation. Some of the dogs had additional samples taken at 90 and 120 minutes. For four dogs with hyperadrenocorticism, timed samples were also obtained at 150, 180 and 240 minutes post-injection. Cortisol concentrations 60 minutes after stimulation with either 5 microg/kg or 250 microg intravenous tetracosactrin were similar for both healthy dogs and dogs with hyperadrenocorticism. The lower dose can therefore be used for diagnosing hyperadrenocorticism in dogs.  相似文献   

19.
The effects of two putative stressors relative to the collection of blood, namely the environment of the treatment room and the pain associated with venepuncture, on plasma levels of luteinising hormone (LH), testosterone and cortisol were examined in six trained male experimental dogs. Blood samples were collected from the dogs in a treatment room as well as in the kennels (control), and by venepuncture as well as via an indwelling intravenous catheter (control). No significant influence of either stressor on plasma levels of LH, testosterone or cortisol was found. Plasma concentrations of these hormones varied considerably both between and within dogs. Mean (+/- SEM; n = 6) plasma concentrations were 4.3 +/- 1.0 micrograms/l for LH, 4.6 +/- 1.9 nmol/l for testosterone and 68 +/- 10 nmol/l for cortisol. It was concluded that the putative stressors, the environment of the treatment room and the pain associated with venepuncture, did not significantly influence plasma levels of LH, testosterone or cortisol in trained male experimental dogs. This conclusion implies that under the experimental conditions described, the validity of results will not be affected by the method of blood collection used.  相似文献   

20.
Erythrocyte insulin receptor binding measurements were evaluated in 8 dogs with spontaneous hyperadrenocorticism. These dogs had normal serum glucose concentration, with normal to high serum insulin concentration (range, 45 to 1,400 pmol/L; normal, 40 to 170 pmol/L). Dogs with hyperadrenocorticism had significant (P less than 0.01) decrease in mean +/- SEM percentage of maximal binding for erythrocyte insulin receptors (2.25 +/- 0.21%), compared with results in 11 clinically normal pet dogs (4.29 +/- 0.42%). The decrease in erythrocyte receptor binding was attributed to significant (P less than 0.01) decrease in high-affinity receptor sites in dogs with hyperadrenocorticism (14.5 +/- 2.8), compared with clinically normal dogs (31.2 +/- 4.3). Significant differences in receptor affinity were not apparent between the 2 groups. Percentage of maximal binding for erythrocyte insulin receptors for dogs with hyperadrenocorticism was inversely correlated with serum insulin concentration (r = -0.85, P less than 0.01). Results indicate that the observed decrease in erythrocyte insulin receptor binding could contribute to insulin resistance and hyperinsulinemia associated with hyperadrenocorticism. Alternatively, decreased binding of insulin receptors in animals with hyperadrenocorticism may result from down-regulation secondary to hyperinsulinemia itself caused by insulin resistance at a postreceptor site (decreased responsiveness).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号