首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural marine products have shown an interesting array of diverse and novel chemical structures with potent biological activities. Our study reports the antiproliferative assays of crude extracts, fraction and pure compound (4R,9S,14S)-4α-acetoxy-9β,14α-dihydroxydolast-1(15),7-diene (1) obtained from brown alga Canistrocarpus cervicornis showing the antileishmanial activity. We showed that 1 had a dose-dependent activity during 72 h of treatment, exhibiting IC(50) of 2.0 μg/mL, 12.0 μg/mL, and 4.0 μg/mL for promastigote, axenic amastigote and intracellular amastigote forms of Leishmania amazonensis, respectively. A cytotoxicity assay showed that the action of the isolated compound 1 was 93.0 times less toxic to the macrophage than to the protozoan. Additionally, compound 1 induced ultrastructural changes, including extensive mitochondrial damage; decrease in Rh123 fluorescence, suggesting interference with the mitochondrial membrane potential; and lipid peroxidation in parasite cells. The use of 1 from C. cervicornis against L. amazonensis parasites might be of great interest as a future alternative to the development of new antileishmanial drugs.  相似文献   

2.
Ale MT  Mikkelsen JD  Meyer AS 《Marine drugs》2011,9(10):2106-2130
Seaweeds--or marine macroalgae--notably brown seaweeds in the class Phaeophyceae, contain fucoidan. Fucoidan designates a group of certain fucose-containing sulfated polysaccharides (FCSPs) that have a backbone built of (1→3)-linked α-L-fucopyranosyl or of alternating (1→3)- and (1→4)-linked α-L-fucopyranosyl residues, but also include sulfated galactofucans with backbones built of (1→6)-β-D-galacto- and/or (1→2)-β-D-mannopyranosyl units with fucose or fuco-oligosaccharide branching, and/or glucuronic acid, xylose or glucose substitutions. These FCSPs offer several potentially beneficial bioactive functions for humans. The bioactive properties may vary depending on the source of seaweed, the compositional and structural traits, the content (charge density), distribution, and bonding of the sulfate substitutions, and the purity of the FCSP product. The preservation of the structural integrity of the FCSP molecules essentially depends on the extraction methodology which has a crucial, but partly overlooked, significance for obtaining the relevant structural features required for specific biological activities and for elucidating structure-function relations. The aim of this review is to provide information on the most recent developments in the chemistry of fucoidan/FCSPs emphasizing the significance of different extraction techniques for the structural composition and biological activity with particular focus on sulfate groups.  相似文献   

3.
Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.  相似文献   

4.
Zhang CY  Wu WH  Wang J  Lan MB 《Marine drugs》2012,10(1):119-130
We investigated the effects of polysaccharides from the brown seaweed Sargassum graminifolium (Turn.) (SGP) on calcium oxalate crystallization, and determined its antioxidant activities. To examine the effects of SGP on calcium oxalate crystallization, we monitored nucleation and aggregation of calcium oxalate monohydrate crystals, using trisodium citrate as a positive control. We assessed antioxidant activities of SGP by determining its reducing power, its ability to scavenge superoxide radicals, and its activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The nucleation inhibition ratio of trisodium citrate and SGP was 58.5 and 69.2%, respectively, and crystal aggregation was inhibited by 71.4 and 76.8%, respectively. Increasing concentrations of SGP resulted in increased scavenging of superoxide anions and DPPH radicals (IC50 = 1.9 and 0.6 mg/mL, respectively). These results suggest that SGP could be a candidate for treating urinary stones because of its ability to inhibit calcium oxalate crystallization and its antioxidant properties.  相似文献   

5.
The fucose-containing sulfated polysaccharides (SP) from brown algae exhibit a wide range of bioactivities and are, therefore, considered promising candidates for health-supporting and medicinal applications. A critical issue is their availability in high, reproducible quality. The aim of the present study was to fractionate and characterize the SP extracted from Saccharina latissima (S.l.-SP) harvested from two marine habitats, the Baltic Sea and North Atlantic Ocean, in May, June and September. The fractionation of crude S.l.-SP by anion exchange chromatography including analytical investigations revealed that S.l.-SP is composed of a homogeneous fraction of sulfated galactofucan (SGF) and a mixture of low-sulfated, uronic acid and protein containing heteropolysaccharides. Furthermore, the results indicated that S.l. growing at an intertidal zone with high salinity harvested at the end of the growing period delivered the highest yield of S.l.-SP with SGF as the main fraction (67%). Its SGF had the highest degree of sulfation (0.81), fucose content (86.1%) and fucose/galactose ratio (7.8) and was most active (e.g., elastase inhibition: IC50 0.21 μg/mL). Thus, S.l. from the North Atlantic harvested in autumn proved to be more appropriate for the isolation of S.l.-SP than S.l. from the Baltic Sea and S.l. harvested in spring, respectively. In conclusion, this study demonstrated that habitat and harvest time of brown algae should be considered as factors influencing the yield as well as the composition and thus also the bioactivity of their SP.  相似文献   

6.
Cardiovascular diseases represent a major cause of disability and death worldwide. Therapeutics are available, but they often have unsatisfactory results and may produce side effects. Alternative treatments based on the use of natural products have been extensively investigated, because of their low toxicity and side effects. Marine organisms are prime candidates for such products, as they are sources of numerous and complex substances with ecological and pharmacological effects. In this work, we investigated, through in vitro experiments, the effects of three diterpenes (pachydictyol A, isopachydictyol A and dichotomanol) from the Brazilian marine alga, Dictyota menstrualis, on platelet aggregation and plasma coagulation. Results showed that dichotomanol inhibited ADP- or collagen-induced aggregation of platelet-rich plasma (PRP), but failed to inhibit washed platelets (WP). In contrast, pachydictyol A and isopachydictyol A failed to inhibit the aggregation of PRP, but inhibited WP aggregation induced by collagen or thrombin. These diterpenes also inhibited coagulation analyzed by the prothrombin time and activated partial thromboplastin time and on commercial fibrinogen. Moreover, diterpenes inhibited the catalytic activity of thrombin. Theoretical studies using the Osiris Property Explorer software showed that diterpenes have low theoretical toxicity profiles and a drug-score similar to commercial anticoagulant drugs. In conclusion, these diterpenes are promising candidates for use in anticoagulant therapy, and this study also highlights the biotechnological potential of oceans and the importance of bioprospecting to develop medicines.  相似文献   

7.
Fucan is a term used to denominate a type of polysaccharide which contains substantial percentages of l-fucose and sulfate ester groups. We obtained five heterofucans from Sargassum filipendula by proteolytic digestion followed by sequential acetone precipitation. These heterofucans are composed mainly of fucose, glucose, glucuronic acid, galactose and sulfate. These fucans did not show anticoagulant activity in PT and aPTT tests. Their antioxidant activity was evaluated using the follow tests; total antioxidant capacity, scavenging hydroxyl and superoxide radicals, reducing power and ferrous ion [Fe(II)] chelating. All heterofucans displayed considerable activity, especially SF-1.0v which showed the most significant antioxidant potential with 90.7 ascorbic acid equivalents in a total antioxidant capacity test and similar activity when compared with vitamin C in a reducing power assay. The fucan antiproliferative activity was performed with HeLa, PC3 and HepG2 cells using MTT test. In all tested conditions the heterofucans exhibited a dose-dependent effect. The strongest inhibition was observed in HeLa cells, where SF-1.0 and SF-1.5 exhibited considerable activity with an IC50 value of 15.69 and 13.83 μM, respectively. These results clearly indicate the beneficial effect of S. filipendula polysaccharides as antiproliferative and antioxidant. Further purification steps and additional studies on structural features as well as in vivo experiments are needed to test the viability of their use as therapeutic agents.  相似文献   

8.
Two new diterpenoids, pachydictyol B (1a/1b) and C (2), were isolated from the dichloromethane extract of the marine brown alga, Dictyota dichotoma, collected from the Red Sea coast of Egypt, along with the known metabolites, pachydictyol A (3a), dictyol E (4), cis-africanan-1α-ol (5a), fucosterol (6), tetrahydrothiophen-1,1-dioxide and poly-β-hydroxybutyric acid. GC-MS analysis of the nonpolar fractions also indicated the presence of β-bourbonene and nonanal, along with three hydrocarbons and five fatty acids or their simple derivatives, respectively. GC-MS analysis of the unsaponifiable algal petroleum ether extract revealed the presence of a further eight compounds, among them 2,2,6,7-tetramethyl-10-oxatricyclo[4.3.0.1(1,7)]decan-5-one (7), N-(4-bromo-n-butyl)-piperidin-2-one (8) and tert-hexadecanethiol. Structures 1–6 were assigned by 1D and 2D NMR, mass spectra (EI, CI, HREI and HRESI) and by comparison with data from related structures. The crude algal extract was potently active against the breast carcinoma tumor cell line, MCF7 (IC50 = 0.6 µg mL−1); pachydictyol B (1a) and dictyol E (4) showed weak antimicrobial properties, and the other compounds were inactive. Pachydictyols B (1a) and C (2) demonstrated a weak and unselective cytotoxicity against twelve human tumor cell lines with a mean IC50 of >30.0 µM.  相似文献   

9.
Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively.  相似文献   

10.
The biomass components of the invasive seaweed Sargassum muticum were fractionated to allow their separate valorization. S. muticum (Sm) and the solid residue remaining after alginate extraction of this seaweed (AESm) were processed with hot, compressed water (hydrothermal processing) to assess the effects of temperature on fucoidan solubilization. Fucose-containing oligosaccharides were identified as reaction products. Operating under optimal conditions (170 °C), up to 62 and 85 wt% of the dry mass of Sm and AESm were solubilized, respectively. The reaction media were subjected to precipitation, nanofiltration and freeze-drying. The dried products contained 50% and 85% of the fucoidan present in Sm and AESm, respectively; together with other components such as phenolics and inorganic components. The saccharidic fraction, accounting for up to 35% of the dried extracts, contained fucose as the main sugar, and also galactose, xylose, glucose and mannose. The concentrates were characterized for antioxidant activity using the TEAC assay.  相似文献   

11.
In the present study, we investigated the antileishmanial activity of sesquiterpene elatol, the major constituent of the Brazilian red seaweed Laurencia dendroidea (Hudson) J.V. Lamouroux, against L. amazonensis. Elatol after 72 h of treatment, showed an IC(50) of 4.0 μM and 0.45 μM for promastigote and intracellular amastigote forms of L. amazonensis, respectively. By scanning and transmission electron microscopy, parasites treated with elatol revealed notable changes compared with control cells, including: pronounced swelling of the mitochondrion; appearance of concentric membrane structures inside the organelle; destabilization of the plasma membrane; and formation of membrane structures, apparently an extension of the endoplasmic reticulum, which is suggestive of an autophagic process. A cytotoxicity assay showed that the action of the isolated compound is more specific for protozoa, and it is not toxic to macrophages. Our studies indicated that elatol is a potent antiproliferative agent against promastigote and intracellular amastigote forms, and may have important advantages for the development of new anti-leishamanial chemotherapies.  相似文献   

12.
Three different fucoidan fractions were isolated and purified from the brown alga, Sargassum mcclurei. The SmF1 and SmF2 fucoidans are sulfated heteropolysaccharides that contain fucose, galactose, mannose, xylose and glucose. The SmF3 fucoidan is highly sulfated (35%) galactofucan, and the main chain of the polysaccharide contains a →3)-α-l-Fucp(2,4SO3)-(1→3)-α-l-Fucp(2,4SO3)-(1→ motif with 1,4-linked 3-sulfated α-l-Fucp inserts and 6-linked galactose on reducing end. Possible branching points include the 1,2,6- or 1,3,6-linked galactose and/or 1,3,4-linked fucose residues that could be glycosylated with terminal β-d-Galp residues or chains of alternating sulfated 1,3-linked α-l-Fucp and 1,4-linked β-d-Galp residues, which have been identified in galactofucans for the first time. Both α-l-Fucp and β-d-Galp residues are sulfated at C-2 and/or C-4 (and some C-6 of β-d-Galp) and potentially the C-3 of terminal β-d-Galp, 1,4-linked β-d-Galp and 1,4-linked α-l-Fucp residues. All fucoidans fractions were less cytotoxic and displayed colony formation inhibition in colon cancer DLD-1 cells. Therefore, these fucoidan fractions are potential antitumor agents.  相似文献   

13.
Marine macrophytes contain a variety of biologically active compounds, some reported to have antiprotozoal activity in vitro. As a part of a screening program to search for new natural antiprotozoals, we screened hydroalcoholic and ethyl acetate extracts of 20 species of seaweeds from three phyla (Rhodophyta, Heterokontophyta and Chlorophyta), sampled along the Normandy (France) coast. We tested them in vitro against the protozoa responsible for three major endemic parasitic diseases: Plasmodium falciparum, Leishmania donovani and Trypanosoma cruzi. The selectivity of the extracts was also evaluated by testing on a mammalian cell line (L6 cells). Ethyl acetate extracts were more active than hydroalcoholic ones. Activity against T. cruzi and L. donovani was non-existent to average, but almost half the extracts showed good activity against P. falciparum. The ethyl acetate extract of Mastocarpus stellatus showed the best antiplasmodial activity as well as the best selectivity index (IC(50) = 2.8 μg/mL; SI > 30). Interestingly, a red algae species, which shares phylogenetic origins with P. falciparum, showed the best antiplasmodial activity. This study is the first to report comparative antiprotozoal activity of French marine algae. Some of the species studied here have not previously been biologically evaluated.  相似文献   

14.
Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min) incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2.  相似文献   

15.
The Search for enzyme activities that efficiently degrade marine polysaccharides is becoming an increasingly important area for both structural analysis and production of lower-molecular weight oligosaccharides. In this study, an endo-acting fucoidanase that degrades Miyeokgui fucoidan (MF), a sulfated galactofucan isolated from the sporophyll (called Miyeokgui in Korean) of Undaria pinnatifida, into smaller-sized galactofuco-oligosaccharides (1000–4000 Da) was purified from a marine bacterium, Sphingomonas paucimobilis PF-1, by ammonium sulfate precipitation, diethylaminoethyl (DEAE)-Sepharose column chromatography, and chromatofocusing. The specific activity of this enzyme was approximately 112-fold higher than that of the crude enzyme, and its molecular weight was approximately 130 kDa (FNase S), as determined by native gel electrophoresis and 130 (S1), 70 (S2) and 60 (S3) kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH and temperature of FNase S were pH 6.0–7.0 and 40–45 °C, respectively. FNase S activity was enhanced by Mn2+ and Na+ (115.7% and 131.2%), but it was inhibited by Ca2+, K+, Ba2+, Cu2+ (96%, 83.7%, 84.3%, and 89.3%, respectively), each at 1 mM. The Km, Vmax and Kcat values of FNase S on MF were 1.7 mM, 0.62 mg·min−1, and 0.38·S−1, respectively. This enzyme could be a valuable tool for the structural analysis of fucoidans and production of bioactive fuco-oligosaccharides.  相似文献   

16.
A fucoidan extracted from Saccharina japonica was fractionated by anion exchange chromatography. The most complex fraction F0.5 was degraded by dilute sulphuric acid and then separated by use of an activated carbon column. Fraction Y1 was fractionated by anion exchange and gel filtration chromatography while Fraction Y2 was fractionated by gel filtration chromatography. The fractions were determined by ESI-MS and analyzed by ESI-CID-MS/MS. It was concluded that F0.5 had a backbone of alternating 4-linked GlcA and 2-linked Man with the first Man residue from the nonreducing end accidentally sulfated at C6. In addition, F0.5 had a 3-linked glucuronan, in accordance with a previous report by NMR. Some other structural characteristics included GlcA 1→3 Man 1→4 GlcA, Man 1→3 GlcA 1→4 GlcA, Fuc 1→4 GlcA and Fuc 1→3 Fuc. Finally, it was shown that fucose was sulfated at C2 or C4 while galactose was sulfated at C2, C4 or C6.  相似文献   

17.
The purpose of this study is to elucidate both the chemical and conformational structure of an unfractionated fucoidan extracted from brown seaweed Turbinaria ornata collected at Nha-trang bay, Vietnam. Electrospray ionization mass spectrometry (ESI-MS) was used for determining the chemical structure and small angle X-ray scattering (SAXS) provided conformational of the structure at the molecular level. The results showed that the fucoidan has a sulfate content of 25.6% and is mainly composed of fucose and galactose residues (Fuc:Gal ≈ 3:1). ESIMS analysis suggested that the fucoidan has a backbone of 3-linked α-l-Fucp residues with branches, →4)-Galp(1→ at C-4 of the fucan chain. Sulfate groups are attached mostly at C-2 and sometimes at C-4 of both fucose and galactose residues. A molecular model of the fucoidan was built based on obtained chemical structure and scattering curves estimated from molecular model and observed SAXS measurement were fitted. The results indicated that fucoidan under study has a rod-like bulky chain conformation.  相似文献   

18.
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of −38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%–43.7% at nanogel concentrations of 0.05–0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%–22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle.  相似文献   

19.
The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol) isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2), human neuroblastoma (SH-SY5Y), rat basophilic leukemia (RBL-2H3), murine macrophages (RAW.267) and Chinese hamster fibroblasts (V79). Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.  相似文献   

20.
In Brazil, snakebites are a public health problem and accidents caused by Lachesis muta have the highest mortality index. Envenomation by L. muta is characterized by systemic (hypotension, bleeding and renal failure) and local effects (necrosis, pain and edema). The treatment to reverse the evolution of all the toxic effects is performed by injection of antivenom. However, such therapy does not effectively neutralize tissue damage or any other local effect, since in most cases victims delay seeking appropriate medical care. In this way, alternative therapies are in demand, and molecules from natural sources have been exhaustively tested. In this paper, we analyzed the inhibitory effect of a sulfated galactan obtained from the red seaweed Palisada flagellifera against some toxic activities of L. muta venom. Incubation of sulfated galactan with venom resulted in inhibition of hemolysis, coagulation, proteolysis, edema and hemorrhage. Neutralization of hemorrhage was also observed when the galactan was administered after or before the venom injection; thus mimicking a real in vivo situation. Moreover, the galactan blocked the edema caused by a phospholipase A2 isolated from the same venom. Therefore, the galactan from P. flagellifera may represent a promising tool to treat envenomation by L. muta as a coadjuvant for the conventional antivenom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号