首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《Science (New York, N.Y.)》1994,266(5184):389-397
The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.  相似文献   

2.
Far too few moderate earthquakes have occurred within the Los Angeles, California, metropolitan region during the 200-year-long historic period to account for observed strain accumulation, indicating that the historic era represents either a lull between clusters of moderate earthquakes or part of a centuries-long interseismic period between much larger (moment magnitude, M(w), 7.2 to 7.6) events. Geologic slip rates and relations between moment magnitude, average coseismic slip, and rupture area show that either of these hypotheses is possible, but that the latter is the more plausible of the two. The average time between M(w) 7.2 to 7.6 earthquakes from a combination of six fault systems within the metropolitan area was estimated to be about 140 years.  相似文献   

3.
Borehole data from young sediments folded above the Puente Hills blind thrust fault beneath Los Angeles reveal that the folding extends to the surface as a discrete zone (相似文献   

4.
The great Sumatra-Andaman earthquake of 26 December 2004   总被引:6,自引:0,他引:6  
The two largest earthquakes of the past 40 years ruptured a 1600-kilometer-long portion of the fault boundary between the Indo-Australian and southeastern Eurasian plates on 26 December 2004 [seismic moment magnitude (Mw) = 9.1 to 9.3] and 28 March 2005 (Mw = 8.6). The first event generated a tsunami that caused more than 283,000 deaths. Fault slip of up to 15 meters occurred near Banda Aceh, Sumatra, but to the north, along the Nicobar and Andaman Islands, rapid slip was much smaller. Tsunami and geodetic observations indicate that additional slow slip occurred in the north over a time scale of 50 minutes or longer.  相似文献   

5.
Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.  相似文献   

6.
Although there is debate on the maximum size of earthquake that is possible on any of several known fault systems in the greater Los Angeles metropolitan region, it is reasonable to assume that the distribution of earthquakes will follow a fractal distribution of rupture areas. For this assumption and an overall slip-rate for the region of approximately 1 centimeter per year, roughly one magnitude 7.4 to 7.5 event is expected to occur every 245 to 325 years. A model in which the earthquake distribution is fractal predicts that, additionally, there should be approximately six events in the range of magnitude 6.6 in this same span of time, a higher rate than has occurred in the historic record.  相似文献   

7.
Holocene deformation indicative of large subduction-zone earthquakes has occurred on two large thrust fault systems in the Humboldt Bay region of northern California. Displaced stratigraphic markers record three offsets of 5 to 7 meters each on the Little Salmon fault during the past 1700 years. Smaller and less frequent Holocene displacements have occurred in the Mad River fault zone. Elsewhere, as many as five episodes of sudden subsidence of marsh peats and fossil forests and uplift of marine terraces are recorded. Carbon-14 dates suggest that the faulting, subsidence, and uplift events were synchronous. Relations between magnitude and various fault-offset parameters indicate that earthquakes accompanying displacements on the Little Salmon fault had magnitudes of at least 7.6 to 7.8. More likely this faulting accompanied rupture of the boundary between the Gorda and North American plates, and magnitudes were about 8.4 or greater.  相似文献   

8.
The San Andreas fault at Parkfield, California, apparently late in an interval between repeating magnitude 6 earthquakes, is yielding to tectonic loading partly by seismic slip concentrated in a relatively sparse distribution of small clusters (<20-meter radius) of microearthquakes. Within these clusters, which account for 63% of the earthquakes in a 1987-92 study interval, virtually identical small earthquakes occurred with a regularity that can be described by the statistical model used previously in forecasting large characteristic earthquakes. Sympathetic occurrence of microearthquakes in nearby clusters was observed within a range of about 200 meters at communication speeds of 10 to 100 centimeters per second. The rate of earthquake occurrence, particularly at depth, increased significantly during the study period, but the fraction of earthquakes that were cluster members decreased.  相似文献   

9.
We present a time-dependent model for the generation of repeated intraplate earthquakes that incorporates a weak lower crustal zone within an elastic lithosphere. Relaxation of this weak zone after tectonic perturbations transfers stress to the overlying crust, generating a sequence of earthquakes that continues until the zone fully relaxes. Simulations predict large (5 to 10 meters) slip events with recurrence intervals of 250 to 4000 years and cumulative offsets of about 100 meters, depending on material parameters and far-field stress magnitude. Most are consistent with earthquake magnitude, coseismic slip, recurrence intervals, cumulative offset, and surface deformation rates in the New Madrid Seismic Zone. Computed interseismic strain rates may not be detectable with available geodetic data, implying that low observed rates of strain accumulation cannot be used to rule out future damaging earthquakes.  相似文献   

10.
Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.  相似文献   

11.
Nur A  Ron H  Beroza GC 《Science (New York, N.Y.)》1993,261(5118):201-203
The Landers, California, earthquake of 28 June 1992 (magnitude = 7.3) is the latest of six significant earthquakes in the past 60 years whose epicenters and slip directions define a 100-kilometer alignment running approximately N15 degrees W across the central Mojave region. This pattern may indicate a geologically young throughgoing fault that replaces numerous older strike-slip faults by obliquely cutting across them. These older faults, and perhaps also the bend in the San Andreas fault, may be losing their ability to accommodate upper crustal deformation because they have become unfavorably oriented with respect to the regional stress field.  相似文献   

12.
We use Global Positioning System (GPS) observations and elastic half-space models to estimate the distribution of coseismic and postseismic slip along the Izmit earthquake rupture. Our results indicate that large coseismic slip (reaching 5.7 meters) is confined to the upper 10 kilometers of the crust, correlates with structurally distinct fault segments, and is relatively low near the hypocenter. Continued surface deformation during the first 75 days after the earthquake indicates an aseismic fault slip of as much as 0.43 meters on and below the coseismic rupture. These observations are consistent with a transition from unstable (episodic large earthquakes) to stable (fault creep) sliding at the base of the seismogenic zone.  相似文献   

13.
Faults in complex tectonic environments interact in various ways, including triggered rupture of one fault by another, that may increase seismic hazard in the surrounding region. We model static and dynamic fault interactions between the strike-slip and thrust fault systems in southern California. We find that rupture of the Sierra Madre-Cucamonga thrust fault system is unlikely to trigger rupture of the San Andreas or San Jacinto strike-slip faults. However, a large northern San Jacinto fault earthquake could trigger a cascading rupture of the Sierra Madre-Cucamonga system, potentially causing a moment magnitude 7.5 to 7.8 earthquake on the edge of the Los Angeles metropolitan region.  相似文献   

14.
The 2 May 1983 Coalinga, California, earthquake (magnitude 6.5) failed to rupture through surface deposits and, instead, elastically folded the top few kilometers of the crust. The subsurface rate of fault slip and the earthquake repeat time are estimated from seismic, geodetic, and geologic data. Three larger earthquakes (up to magnitude 7.5) during the past 20 years are also shown to have struck on reverse faults concealed beneath active folds.  相似文献   

15.
Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.  相似文献   

16.
Shorelines rose as much as 7 meters along southern Puget Sound and Hood Canal between 500 and 1700 years ago. Evidence for this uplift consists of elevated wave-cut shore platforms near Seattle and emerged, peat-covered tidal flats as much as 60 kilometers to the southwest. The uplift was too rapid for waves to leave intermediate shorelines on even the best preserved platform. The tidal flats also emerged abruptly; they changed into freshwater swamps and meadows without first becoming tidal marshes. Where uplift was greatest, it adjoined an inferred fault that crosses Puget Sound at Seattle and it probably accompanied reverse slip on that fault 1000 to 1100 years ago. The uplift and probable fault slip show that the crust of the North America plate contains potential sources of damaging earthquakes in the Puget Sound region.  相似文献   

17.
The south flank of Kilauea volcano has experienced two large [magnitude (M) 7.2 and M 6.1] earthquakes in the past two decades. Global Positioning System measurements conducted between 1990 and 1993 reveal seaward displacements of Kilauea's central south flank at rates of up to about 10 centimeters per year. In contrast, the northern side of the volcano and the distal ends of the south flank did not displace significantly. The observations can be explained by slip on a low-angle fault beneath the south flank combined with dilation deep within Kilauea's rift system, both at rates of at least 15 centimeters per year.  相似文献   

18.
Stein RS  King GC  Lin J 《Science (New York, N.Y.)》1992,258(5086):1328-1332
The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.  相似文献   

19.
Radiocarbon ages for the marine late Pleistocene stratigraphic units of the Baldwin Hills are 36,200 +/- 2,750 years and 28,450 +/- 2,600 years, respectively, defining the termination of marine deposition in this area of the Los Angeles Basin at less than 28,000 years ago. Faunas of the older sample suggest that water depths were about 100 meters at the time of deposition. Shoaling of waters by deposition resulted in very shallow marine to nonmarine conditions about 28,000 years ago. The average rates of uplift for the past 36,000 years have been between 0.5 and 0.8 meter per 100 years.  相似文献   

20.
The Himalayan orogen has produced three thrust earthquakes with moment magnitude (Mw) 7.8 to 8.5 during the past century, yet no surface ruptures associated with these great earthquakes have been documented. Here, we present paleoseismic evidence from east central Nepal that, since approximately 700 A.D., a single earthquake ruptured the Frontal Thrust fault at approximately 1100 A.D., with a surface displacement of approximately 17 (+5/-3) meters and a lateral extent and size that could have exceeded 240 kilometers and approximately Mw 8.8, respectively. Ruptures associated with Mw <8.2 events would contribute to the frontal Himalayas folding but would stop before reaching the surface. These findings could require substantial modifications to current regional seismic hazard models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号