首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
西葫芦株型性状主基因-多基因混合遗传分析   总被引:4,自引:1,他引:3  
选用蔓生和矮生的西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群体,应用植物数量性状主基因-多基因混合遗传模型对6个世代群体株型性状进行多世代联合分析。结果表明:2个组合的西葫芦株高与叶片数性状遗传均为加性-显性-上位性两对主基因(B-1)遗传模型;2个组合的株高以基因的加性效应为主,而叶片数以加性和显性效应为主;F2的主基因遗传率较高,环境影响相对较小,表明西葫芦株型育种宜早代选择;对西葫芦株型性状的遗传改良,可选择株型紧凑的亲本材料,通过杂交、回交转移主基因,选育株型紧凑的材料。  相似文献   

2.
陈凤真 《北方园艺》2011,(5):159-162
选用西葫芦自交系配制q-1×23-4G(组合1)和q-1×A-7(组合2)2个组合,构建P1、F1、P2、B1、B2和F26个家系世代群,应用植物数量性状主基因-多基因混合遗传模型对该6个世代群体果实整齐度进行多世代联合分析。结果表明:2个组合的西葫芦的果实整齐度性状遗传均为1对加性主基因+加性-显性多基因(D-2)遗传模型,以显性效应为主;2个组合F2的基因遗传率较高,环境影响相对较小;因此,西葫芦果实整齐度育种宜早代选择。  相似文献   

3.
以父本200932(果肉橙红色)与母本200930(果肉绿色)为亲本,建立了6个联合世代(P1、P2、F1、F2、BC1P1及BC2P2)群体,采用植物数量性状主基因+多基因混合遗传模型,进行多世代联合分析,探讨甜瓜果肉β-胡萝卜素含量性状的遗传特点。结果表明:组合200930×200932的β-胡萝卜素含量性状遗传受两对加性-显性-上位性主基因+加性-显性多基因模型(E-1)控制,F2群体主基因遗传率为92.66%,多基因遗传率为5.40%,BC1P1群体主基因遗传率为86.80%,多基因遗传率为0,BC2P2群体主基因遗传率为59.88%,多基因遗传率为38.60%。  相似文献   

4.
以强雌性苦瓜品系09C-51、09C-54和普通性型品系09C-57为亲本配制杂交组合,调查单株主茎50节位内的雌花节率。通过对两个组合的P1、P2、F1、F2、BC1P1各世代植株的性型观察,并经χ2 测验,表明苦瓜强雌性性状由1对不完全显性基因控制。利用组合09C-51×09C-57的Pl、P2、Fl、F2群体的性型分离数据,进一步对性型进行数量遗传学分析,表明强雌性性状符合1对显性主基因+加性-显性多基因模型,说明苦瓜强雌性性状由1对主基因控制,且存在微效多基因的影响,其主基因遗传率为63.06%,多基因遗传率为26.96%。  相似文献   

5.
西葫芦8个农艺性状的遗传效应分析   总被引:1,自引:0,他引:1  
陈凤真  何启伟  樊治成  盛金 《园艺学报》2007,34(5):1183-1188
 选用性状差异显著的3个西葫芦自交系配制两个杂交组合,对其产量、熟性和株型(株高、叶数、节间距)等农艺性状进行6个不同世代遗传效应分析。结果表明:杂种一代在产量性状方面表现出不同程度的杂种优势;单株结果数、坐果率和第一雌花节位符合加性—显性遗传模型,且第一雌花节位以负向超显性效应为主;株高、叶数、节间距、单果质量和始花期符合加性—显性—上位性遗传模型;控制株高遗传的主要是加性效应,控制始花期的主要是加性和加性×显性上位性效应,控制叶数的主要是加性和显性效应;单果质量的广义遗传力较低。  相似文献   

6.
西瓜强雌性状的遗传效应分析   总被引:5,自引:0,他引:5  
 以强雌性西瓜品系BG1和普通花性型品系ZY10为材料配制杂交组合, 调查单株30节位内的 雌花比率, 利用主基因+多基因混合遗传模型多世代联合分析法, 对该组合的P1、P1、F1、F2、BC1P1和BC1P2等6个世代群体的雌花率性状进行分析。结果表明: 西瓜强雌性状遗传受两对主基因的加性-显性-上位性模型控制(即B-1模型) , 主基因表现为隐性。第1和第2对主基因的加性效应值分别为33.46和5.17; 而显性效应值分别为- 20.56 和- 11.20。主基因遗传率在BC1P1和F2世代中高达93.75%和94.32% , 在BC1P2世代中较低, 为60.91%。在该组合中不存在多基因的效应。  相似文献   

7.
青花菜花球‘荚叶’性状主基因+多基因遗传分析   总被引:4,自引:2,他引:2  
 以青花菜86101 ×90196组合获得的DH群体和配制的6个联合世代( P1、P2、F1、B1、B2和F2 ) 群体为试材, 采用主基因+多基因混合遗传模型对花球‘荚叶’性状进行了遗传分析。DH群体分析结果表明, 花球荚叶性状的遗传受到2对连锁并具有加性-加性×加性-上位性作用主基因+多基因( E-220模型) 的控制; 经6个世代联合分析结果表明, 花球荚叶性状的遗传受到2对加性-显性-上位性主基因+加性-显性-上位性多基因( E模型) 的控制, DH群体的主基因遗传率为70.80% , B1、B2和F2世代主基因遗传率分别为73.59%、57.70%和87.07%。上述结果表明: 青花菜花球荚叶性状的遗传受到2对主基因+多基因的控制, 主基因遗传率相对较高。  相似文献   

8.
摘要:为了探究茄子产量相关性状与基因间互作的遗传模型,为茄子高效育种提供理论依据,以绿圆茄 “茄27”自交系为母本,紫长茄“茄31”自交系为父本,配制成F1杂交组合,分别进行自交、回交,构建了 P1、P2、F1、F2、B1、B2 6个世代遗传群体,利用主基因、多基因混合分析法研究了茄子产量相关性状的遗传 模型。结果表明:茄子单株产量受1对主基因的加性-显性遗传,单株结果数受2对加性主基因+加性-显性多基 因混合遗传,单株最大单果质量受2对加性主基因+加性-显性多基因遗传;单株产量和单株结果数以非加性 遗传为主,其中单株结果数以2对主基因加性效应遗传为主;单株最大果质量中B1和F2世代以主基因加性遗传 为主,其主基因遗传率分别为50.48%和54.33%,B2世代以多基因遗传为主,多基因遗传率为50.88%。综上可 知,茄子产量性状受到加性和显性遗传效应的影响。  相似文献   

9.
以茎/叶性状不同的3个茎瘤芥自交系为亲本配制了2个杂交组合,对其P1、P2、F1、F2 群体茎/叶性状的遗传体系应用主基因+多基因混合遗传模型分离分析方法进行了研究。结果表明:2个杂交组合的茎/叶性状遗传体系均由1对加性-显性主基因+加性-显性-上位性多基因(D-0)构成;F2 世代的主基因遗传率为60.17%~68.74%,多基因遗传率为6.83%~10.23%;主基因以加性效应为主,且均有不同程度的负向显性效应。  相似文献   

10.
以高感根肿病的青花菜自交系‘93219’和高抗根肿病的甘蓝近缘野生种(Brassica macrocarpa Guss.)自交系‘B2013’为亲本配制的6个联合世代(P1、P2、F1、BC1、BC2和F2)群体为试材,采用主基因 + 多基因混合遗传模型对根肿病抗性进行了遗传分析。结果表明:青花菜 × 甘蓝近缘野生种‘B2013’后代对根肿病抗性的最适遗传模型为B-1模型,即由两对加性―显性―上位性主基因控制。BC1、BC2和F2世代主基因遗传率分别为81.22%、78.36%和80.00%,遗传变异平均值占表型变异的79.86%,环境变异平均值占表型变异的20.14%,表明抗病性以主基因遗传为主,同时受环境影响较大,应在早期世代进行选择,BC1、F2世代主基因选择效率较高。  相似文献   

11.
利用雌雄异花同株品系3-2-2和雄全同株品系TopMark为亲本,配置杂交组合,获得6世代群体(P1,P2,F1,F2,BC1P1,BC1P),调查定植后第1朵雌花开放到定植后60 d内的雌花率,通过主-多基因混合模型分析其遗传效应.结果表明:甜瓜雌雄异花同株植株杂交后代雌花率受到1对主效基因控制,同时存在2对微效基因,主基因遗传率为83.33%,微效基因的遗传率为8.125%,同时讨论了利用雌花率分析雌雄异花同株遗传规律的可行性.  相似文献   

12.
甜瓜重组自交系群体第1雌花开花期遗传分析   总被引:1,自引:0,他引:1  
以美国早花厚皮甜瓜品系WI998为母本(P1),中国晚花薄皮甜瓜品系3-2-2为父本(P2)杂交所得的包括185个家系的重组自交系(RIL)群体为试验材料,通过RIL群体主基因+多基因混合遗传模型分析法,研究不同季节第1雌花开花期(DFF)的遗传特点。结果表明:春秋两季第1雌花开花期遗传均受2对重叠性主基因+加性多基因模型(E_1_8)控制,春季主基因遗传率为77.05%,多基因遗传率为22.44%;秋季主基因遗传率为72.38%,多基因遗传率为27.52%。表明甜瓜DFF主基因遗传力大于多基因遗传力,DFF主要受主基因控制,并在不同季节遗传稳定。  相似文献   

13.
苦瓜第1雌花节位和雌花数的杂种优势   总被引:7,自引:0,他引:7  
将8个绿苦瓜高世代自交系分为两组;共配制15个杂交组合,对第1雌花节位和主蔓前期雌花数的杂种优势进行了研究。结果表明:第1雌花节位有6个组合表现负向离中优势,有13个组合表现为负向越亲优势,且有4个组合低于小值亲本;雌花数有5个组合表现为正向离中优势,有4个组合表现为正向超亲优势。通过对第1雌花节位与雌花数两个性状亲子关系的讨论提出实现早熟性和晚熟性育种目标的亲本选配方法。  相似文献   

14.
以早抽薹‘S-1’与晚抽薹‘G-1’为亲本,构建F1、BC1、BC2和F2群体,采用植物数量性状主基因 + 多基因混合遗传模型分析法对结球甘蓝抽薹性状进行遗传分析,并采用SLAF-BSA方法对抽薹时间进行QTL定位分析。结果显示,结球甘蓝抽薹性状是由2对加性—显性—上位性主基因 + 加性—显性多基因遗传控制;主基因 + 多基因平均遗传率是93.41%。共检测到2个QTL,分别为2号染色体上的2.31 ~ 3.09 Mb和33.57 ~ 34.40 Mb,总长度为1.61 Mb。  相似文献   

15.
摘要:以感黑斑病自交系L63和抗黑斑病自交系L9为亲本建立了6个世代联合群体(P1、P2、F1、BC15、BC1R、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的黑斑病抗性进行多世代联合分析。结果表明,黄瓜抗黑斑病性状符合D-2遗传模型,受1对加性主基因+加性一显性多基因控制;BC15、BC1R、F2的主基因遗传率分别为60.23%、60.23%、75.18%,多基因遗传率均为0。说明控制黄瓜黑斑病的抗性为主基因遗传,并且遗传稳定,环境方差占表型方差的比例大于24.82%、小于39.77%,也受到外界环境的影响。  相似文献   

16.
选择耐盐性不同的6份砧用南瓜(Cucurbita moschata)自交系为材料,采用完全双列杂交法对杂交后代耐盐性的配合力进行分析,研究砧用南瓜耐盐性遗传规律。结合各配合力的分析,在36个配制组合中,选出较为优良的配制组合18C0077×18C0005、18C0077×18C0046、18C0077×18C0049、18C0024×18C0046、18C0024×18C0049、18C0024×18C0026。同时,以耐盐性强的砧用南瓜自交系18C0077(P_1)和耐盐性弱的砧用南瓜自交系18C0005(P_2)配制得到的6个世代(P_1、P_2、F_1、B_1、B_2和F_2)为材料,利用数量性状遗传模型进行砧用南瓜耐盐性的遗传分析。结果表明,砧用南瓜耐盐性的遗传符合"2对加性显性-上位性主基因+加性-显性多基因"模型。砧用南瓜各世代耐盐性主基因遗传率在34.62%~62.08%之间,以主基因遗传为主,且主基因遗传力在B1中最高,适合在早期世代进行选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号