首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased rates of respiration early in the growing season (July). Soil Al treatment had a broad impact, reducing foliar concentrations of Ca, Mg, Mn, P and Zn, and resulting in smaller stem diameters, sapling heights and shoot lengths compared with soil treatments with no added Al. Aluminum treatment also reduced respiration when shoots were elongating in July and decreased net photosynthesis at the end of the growing season (September). Three lines of evidence suggest that Al-induced alterations in growth and physiology were independent of foliar Ca status: (1) Ca concentrations in foliage of Al-treated saplings were within the range of sufficiency established for red spruce; (2) mCa concentrations were unaffected by Al treatment; and (3) no Al x Ca interactions were detected. Acid mist treatment increased foliar Fe and K concentrations and increased leaching of Ca, Mg, Mn, Zn, Fe, and Al from foliage. Leaching losses of Ca were more than twice those of the element with the next highest amount of leaching (Zn), and probably led to the reductions in mCa concentration and membrane stability of acid-treated saplings. Acidic mist resulted in enhanced shoot growth, and consistent reductions in foliar cold tolerance in the fall and winter. Of the few significant interactions among treatments, most involved the influence of mist pH and Al treatment on foliar nutrition. In general, reductions in cation concentration associated with Al addition were greater for pH 5.0-treated saplings than for pH 3.0-treated saplings. We propose that H(+)-induced leaching of mCa from mesophyll cells is the mechanism underlying acid-induced reductions in foliar cold tolerance of red spruce.  相似文献   

2.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   

3.
Photosynthetic light acclimation in red pine (Pinus resinosa Ait.) seedlings was examined in a greenhouse study to better understand the physiological response of this species to increased light intensity following release from competition. Seedlings grown in a high (HL), medium (ML) or low (LL) light environment for 12 weeks were transferred to high light. Gas exchange and chlorophyll fluorescence of ML and LL seedlings were measured prior to and following transfer and compared with the HL control treatment. Photosynthetic characteristics were related to initial light treatment and time after transfer. Acclimation of gas exchange features to high light in shade formed ML and LL foliage was relatively rapid, with similar values among light treatments within 57 days of transfer. Acclimation of net photosynthetic rate was similar in ML and LL seedlings, and was associated primarily with increased mesophyll conductance to CO2. The ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) decreased initially after transfer, especially in LL seedlings, but recovered to normal values after 57 days. Red pine seedlings appear to be well adapted for photosynthetic acclimation to high light intensity, consistent with that reported for other early successional tree species.  相似文献   

4.
Gardiner ES  Krauss KW 《Tree physiology》2001,21(15):1103-1111
Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27%) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves with 90% greater blade area, 26% less mass per unit volume, and 35% lower nitrogen (N) concentration per unit area, leading to a 15% reduction in leaf photosynthetic capacity when carbon exchange rates were based on blade area. However, when carbon exchange rates were based on leaf mass, leaves acclimated to partial sunlight exhibited a 15% greater photosynthetic capacity realized primarily through an increased initial slope of the photosynthetic light response (A/PPFD) curve and increased net photosynthesis at leaf saturation (Amax). Short-term flooding increased leaf mass per unit area more than 19%, reduced foliar N concentrations per unit dry mass by 19%, and initiated reductions in Amax and apparent quantum yield (phi) of seedlings in both light regimes. Greatest impairment of Amax (56% area basis, 65% mass basis) and phi (40%) were observed in leaves receiving full sunlight, and the declines were concomitant with a 35% decrease in chlorophyll concentration. Flooding also depressed instantaneous photosynthetic N-use efficiency (PPNUE) such that Amax decreased 54%, and the initial slope of PPNUE/PPFD curves decreased 33 and 50% for leaves acclimated to partial and full sunlight, respectively. The A/PPFD patterns indicated that the magnitude of flood-induced inhibition of the photosynthetic mechanism of cherrybark oak seedlings is determined partly by the light environment.  相似文献   

5.
【目的】近年来,硅对于的植物影响受到人们广泛关注,人们试图将硅确定为植物生长发育的的“必要元素”。因此如何提高植物对硅的吸收利用来增加植物的农艺性状和产量,是当前农业和林业研究的一个重要课题。【方法】以黄枝杉Cunninghamia lanceolata和罗田垂枝杉C.lanceolata var.luotian为材料,采用盆栽的方式,研究施加不同浓度的纳米SiO2颗粒(0、1、2、4 g/盆)对杉木幼苗光合参数、叶绿素荧光、叶片厚度、氮磷钾含量及其分配、生物量累积的影响。【结果】本研究结果显示,SiO2纳米颗粒对杉木根系的生长发育有很大的促进作用,使之能更好的吸收养分,加强了氮磷钾含量的累积。且叶片的厚度也有所增加,在较低的浓度下,气孔导度、光合作用机制、以及光合作用效率增加;地上的生物量也随着施入SiO2纳米颗粒浓度的增加而增加。【结论】我们的实验表明,SiO2纳米颗粒通过促进根系发育加强对营养的吸收和提升叶片厚度,以及提高净光合速率和气孔导度来提高植物的生长机理,进而增加植物的生物量来提升产量。鉴于其对植物生长发育及产量的多种积极影响,硅纳米材料将会为农林植物增产有重要的影响和广阔的前景。  相似文献   

6.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

7.
The changes in photosynthetic rates, light environment and foliar nutrient concentrations following thinning were examined in an 8-year-old Eucalyptus nitens (Deane and Maiden) Maiden plantation. The objectives of the study were to: (1) determine the extent to which maximum photosynthetic rates (Amax) of E. nitens are affected by stand thinning; (2) relate the spatial pattern of Amax within the crown to the changes in light environment caused by thinning; and (3) establish if the responses of Amax to thinning are driven by changes in area-based foliar nitrogen (Na) or phosphorus (Pa) concentrations. Photosynthetic rates measured under saturating light availability increased throughout the crown after thinning. The greatest increases were observed in the lower and middle crown zones. Photosynthetic rate was positively related to foliar N concentration. Thinning increased Na and Pa because of a significant decrease in specific leaf area (SLA) after thinning. Changes in photosynthetic rates, SLA and foliar nutrient distributions with thinning were well correlated with changes in incident solar irradiance throughout the tree crown.  相似文献   

8.
Girdling effects on fruitlet abscission, leaf chlorophyll, chlorophyll a fluorescence and carbohydrate concentration in various flowering and vegetative shoots were studied during natural fruit drop in two Citrus cultivars. Irrespective of shoot type, girdling delayed fruitlet abscission, but only fruitlets borne on leafy shoots had increased final fruit set. Chlorophyll a fluorescence analysis revealed differences in quantum yield efficiency of photosystem II of light adapted leaves (Phi(PSII)) among shoot types and in response to girdling. In young leaves of vegetative shoots, girdling decreased Phi(PSII), whereas Phi(PSII) increased from Day 30 after girdling in young leaves of leafy flowering shoots; however, Phi(PSII) did not change in mature leaves during fruit set in either control or girdled trees. Girdling altered leaf carbohydrate concentrations and the photosynthetic performance of the various shoot types. Our results indicate that, in Citrus, several carbohydrate-based regulatory mechanisms of photosynthesis coexist during carbohydrate accumulation brought about by girdling. It is concluded that the delay in fruitlet abscission and the increase in Phi(PSII )observed in girdled leafy flowering shoots are the mechanisms underlying the enhancement of fruit set after girdling.  相似文献   

9.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

10.
In our experiments, one-year-old Larix olgensis seedlings were cultivated in sand, and supplied with solutions with different concentrations of nitrate or phosphate. The effects of nitrogen and phosphorus supply on chlorophyll biosynthesis, total nitrogen content, and photosynthetic rate were studied. The experimental results are listed below: 1) 5-aminolevulinic acid (ALA) synthetic rate increased as nitrate concentrations supplied to larch seedlings increased from 1 to 8 mmol/L. But the rate decreased by 17% when nitrate concentration increased to 16 mmol/L, in contrast to the control. Under phosphate treatments, ALA synthetic rates were similar to those under nitrate treatments. The activities of porphobilinogen (PBG) synthase reached a maximum when larch seedlings were supplied with 8 mmol/L of nitrate or 1 mmol/L of phosphate. 2) when larch seedlings were supplied with 8 mmol/L of nitrate and 0.5 mmol/L of phosphate, the contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids reached a maximum. The total nitrogen contents in leaves increased as nitrate concentrations increased. 3) When phosphate concentrations increased from 0.125 to 1 mmol/L, the total nitrogen contents in leaves slightly increased; however, continuous increase of phosphate concentrations resulted in the decrease in total nitrogen contents in leaves. When nitrate concentrations increased from 1 to 8 mmol/L, soluble protein contents in leaves increased in general, and continuous increase of nitrate concentrations induced a decrease in soluble protein contents in leaves. Under treatment of 0.25 mmol/L of phosphate, the soluble protein contents reached a maximum. 4) In general, F v/F m increased as nitrate concentrations increased from 1 to 8 mmol/L, and continuous increase of nitrate concentration resulted in decrease in F v/F m. The similar changes occurred under phosphate treatments. As nitrate concentrations increased from 1 to 8 mmol/L, photosynthetic rates gradually increased, but when nitrate concentrations increased to 16 mmol/L, photosynthetic rate reduced by 16%, in contrast to the control. Photosynthetic rates reached a maximum when seedlings were supplied with 1 mmol/L, and an oversupply of phosphate (2 mmol/L) resulted in decrease in photosynthetic rates. The results suggested that supply levels of nitrogen affected ALA biosynthetic rates, activities of PBG synthase, and affected contents of chlorophyll and carotenoids. Moreover, nitrogen supply levels affected contents of total nitrogen and soluble proteins in leaves, and net photosynthetic rates. ALA biosynthesis rates and activities of PBG synthase were affected by phosphate supply, but contents of chlorophyll and carotenoids were not affected. And net photosynthetic rates were affected little by phosphate supply. __________ Translated from Scientia Silvae Sinicae, 2005, 41(4) [译自:林业科学, 2005, 41(4)]  相似文献   

11.
We investigated growth, leaf monoterpene emission, gas exchange, leaf structure and leaf chemical composition of 1-year-old Quercus ilex L. seedlings grown in ambient (350 microl l(-1)) and elevated (700 microl l(-1)) CO2 concentrations ([CO2]). Monoterpene emission and gas exchange were determined at constant temperature and irradiance (25 degrees C and 1000 micromol m(-2) s(-1) of photosynthetically active radiation) at an assay [CO2] of 350 or 700 microl l(-1). Measurements were made on intact shoots after the end of the growing season between mid-October and mid-February. On average, plants grown in elevated [CO2] had significantly increased foliage biomass (about 50%). Leaves in the elevated [CO2] treatment were significantly thicker and had significantly higher concentrations of cellulose and lignin and significantly lower concentrations of nitrogen and minerals than leaves in the ambient [CO2] treatment. Leaf dry matter density and leaf concentrations of starch, soluble sugars, lipids and hemi-cellulose were not significantly affected by growth in elevated [CO2]. Monoterpene emissions of seedlings were significantly increased by elevated [CO2] but were insensitive to short-term changes in assay [CO2]. On average, plants grown in elevated [CO2] had 1.8-fold higher monoterpene emissions irrespective of the assay [CO2]. Conversely, assay [CO2] rapidly affected photosynthetic rate, but there was no apparent long-term acclimation of photosynthesis to growth in elevated [CO2]. Regardless of growth [CO2], photosynthetic rates of all plants almost doubled when the assay [CO2] was switched from 350 to 700 microl l(-1). At the same assay [CO2], mean photosynthetic rates of seedlings in the two growth CO2 treatments were similar. The percentage of assimilated carbon lost as monoterpenes was not significantly altered by CO2 enrichment. Leaf emission rates were correlated with leaf thickness, leaf concentrations of cellulose, lignin and nitrogen, and total plant leaf area. In all plants, monoterpene emissions strongly declined during the winter independently of CO2 treatment. The results are discussed in the context of the acquisition and allocation of resources by Q. ilex seedlings and evaluated in terms of emission predictions.  相似文献   

12.
Little is known about the effect of flowering on leaf photosynthesis. To understand why net photosynthesis (A(net)) is lower in Mangifera indica L. leaves close to inflorescences than in leaves on vegetative shoots, we measured nitrogen and carbohydrate concentrations, chlorophyll a fluorescence and gas exchange in recently matured leaves on vegetative terminals and on floral terminals of 4-year-old trees. We used models to estimate photosynthetic electron fluxes and mesophyll conductance (g(m)). Lower A(net) in leaves close to developing inflorescences was attributable to substantial decreases in stomatal conductance and g(m), and also in photosynthetic capacity as indicated by the decrease in the light-saturated rate of photosynthetic electron transport (J(max)). The decrease in J(max) was the result of decreases in the amount of foliar nitrogen per unit leaf area, and may have been triggered by a decrease in sink activity as indicated by the increase in the hexose:sucrose ratio. Parameters measured on leaves close to panicles bearing set fruits were generally intermediate between those measured on leaves on vegetative shoots and on leaves close to inflorescences, suggesting that the changes in A(net) associated with flowering are reversible.  相似文献   

13.
Red spruce (Picea rubens Sarg.) trees growing at high elevation in the northeastern United States have experienced decline in recent years but seedlings have proved to be relatively tolerant of a wide range of environmental stresses in controlled studies. One possible reason for the wide tolerance to stress in seedlings is their inherently large pool of carbohydrate reserves, which is available for maintenance during and regrowth after periods of stress. We tested for the effects of foliar N and exposure to ozone on foliar carbohydrate reserves of 20-year-old naturally regenerated saplings. The trees were maintained in native soil in 360-l containers for 5 years before the experiment. The year before the experiment, trees were fertilized with N,P,K to provide a population of trees from N deficient to N sufficient. As foliar N decreased below 0.9%, length of current-year shoots and specific needle area of current-year needles declined. Foliar N concentration was correlated with foliar sugar and starch concentrations, but relationships varied with time of year. Before bud break, foliar carbohydrates and N, in general, were positively correlated, and date of bud break was delayed in N-deficient trees. During active growth, foliar soluble sugars and N were positively correlated, but starch concentrations were negatively correlated with N. By late September, neither starch nor sugar concentration was correlated with N concentration. Ozone and foliar N concentrations did not interact to change foliar carbohydrate concentrations or shoot and needle growth in this relatively short-term study.  相似文献   

14.
To better understand the effects of sugar accumulation on red color development of foliage during autumn, we compared carbohydrate concentration, anthocyanin expression and xylem pressure potential of foliage on girdled versus non-girled (control) branches of 12 mature, open-grown sugar maple (Acer saccharum Marsh.) trees. Half of the study trees were known to exhibit mostly yellow foliar coloration and half historically displayed red coloration. Leaves from both girdled and control branches were harvested at peak color expression (i.e., little or no chlorophyll present). Disruption of phloem export by girdling increased foliar sucrose, glucose and fructose concentrations regardless of historical tree color patterns. Branch girdling also increased foliar anthocyanin expression from 50.4 to 66.7% in historically red trees and from 11.7 to 54.2% in historically yellow trees, the latter representing about a fivefold increase compared with control branches. Correlation analyses indicated a strong and consistent relationship between foliar red coloration and sugar concentrations, particularly glucose and fructose, in both girdled and control branches. Measures of xylem pressure potentials confirmed that girdling was a phloem-specific treatment and had no effect on water transport to distal leaves. Results indicate that stem girdling increased foliar sugar concentrations and enhanced anthocyanin expression during autumn in sugar maple foliage. Native environmental stresses (e.g., low autumn temperatures) that reduce phloem transport may promote similar physiological outcomes.  相似文献   

15.
Polar regions were covered with extensive forests during the Cretaceous and early Tertiary, and supported trees comparable in size and productivity to those of present-day temperate forests. With a winter of total or near darkness and a summer of continuous, low-angle illumination, these temperate, high-latitude forests were characterized by a light regime without a contemporary counterpart. Although maximum irradiances were much lower than at mid-latitudes, the 24-h photoperiod provided similar integrated light flux. Taxodium, Larix and Metasequoia, three genera of deciduous conifers that occurred in paleoarctic wet forests, have extant, closely related descendents. However, the contemporary relative abundance of these genera differs greatly from that in the paleoarctic. To provide insight into attributes that favor competitive success in a continuous-light environment, we subjected saplings of these genera to a natural photoperiod or a 24-h photoperiod and measured gas exchange, chlorophyll fluorescence, non-structural carbohydrate concentrations, biomass production and carbon allocation. Exposure to continuous light significantly decreased photosynthetic capacity and quantum efficiency of photosystem II in Taxodium and Larix, but had minimal influence in Metasequoia. In midsummer, foliar starch concentration substantially increased in both Taxodium and Larix saplings grown in continuous light, which may have contributed to end-product down-regulation of photosynthetic capacity. In contrast, Metasequoia allocated photosynthate to continuous production of new foliar biomass. This difference in carbon allocation may have provided Metasequoia with a two fold advantage in the paleoarctic by minimizing depression of photosynthetic capacity and increasing photosynthetic surface.  相似文献   

16.
选用不同浓度的KH2PO4分别对盆栽金盏菊进行了叶面喷肥试验。结果表明:2‰KH2PO4不仅可促进金盏菊幼苗生长,还可提旱花期,提高花的产量及品质,增加叶绿素含量,能满足金盏菊生长对养分的长期需求,即磷钾肥更适于盆栽金盏菊的生长发育。  相似文献   

17.
磷胁迫对澳洲坚果幼苗叶片光合特性和荧光参数的影响   总被引:1,自引:0,他引:1  
采用塑料管土柱法研究了磷胁迫对澳洲坚果幼苗叶片光合作用及叶绿素荧光特性的影响。结果表明:低磷CK(不施磷作为对照)、中磷MP(175 mg/kg P2O5)与高磷HP(350 mg/kg P2O5)之间有显著差异,澳洲坚果幼苗叶片的光合参数在低磷处理下净光合速率(Pn)、蒸腾速率(Tr)、胞间CO2浓度(C i)、气孔导度(Gs)均呈下降趋势,表明了供试的6个澳洲坚果品种(Hy、A16、863、951、695和Daddow)幼苗叶片光合能力随胁迫程度的加重均下降,叶绿素荧光参数中的最大荧光(Fm)、可变荧光(Fv)和最大荧光比(Fv/Fm)在低磷处理下也均降低,而初始荧光(F0)值升高。6个澳洲坚果品种之间有显著差异,根据测定参数对澳洲坚果各个品种幼苗的耐低磷能力进行综合评价,从强到弱依次为Daddow>951>695>A16>Hy>863。  相似文献   

18.
Foliar nutrient imbalances, including the hyperaccumulation of manganese (Mn), are correlated with symptoms of declining health in sensitive tree species growing on acidic forest soils. The objectives of this study were to: (1) compare foliar nutrient accumulation patterns of six deciduous (sugar maple (Acer saccharum Marsh.), red maple (Acer rubrum L.), red oak (Quercus rubra L.), white oak (Quercus alba L.), black cherry (Prunus serotina Ehrh.) and white ash (Fraxinus americana L.)) and three evergreen (eastern hemlock (Tsuga canadensis L.), white pine (Pinus strobus L.) and white spruce (Picea glauca (Moench) Voss.)) tree species growing on acidic forest soils; and (2) examine how leaf phenology and other traits that distinguish evergreen and deciduous tree species influence foliar Mn accumulation rates and sensitivity to excess Mn. For the first objective, leaf samples of seedlings from five acidic, non-glaciated field sites on Pennsylvania's Allegheny Plateau were collected and analyzed for leaf element concentrations. In a second study, we examined growth and photosynthetic responses of seedlings exposed to excess Mn in sand culture. In field samples, Mn in deciduous foliage hyperaccumulated to concentrations more than twice as high as those found in evergreen needles. Among species, sugar maple was the most sensitive to excess Mn based on growth and photosynthetic measurements. Photosynthesis in red maple and red oak was also sensitive to excess Mn, whereas white oak, black cherry, white ash and the three evergreen species were tolerant of excess Mn. Among the nine species, relative rates of photosynthesis were negatively correlated with foliar Mn concentrations, suggesting that photosynthetic sensitivity to Mn is a function of its rate of accumulation in seedling foliage.  相似文献   

19.
Northern red oak (Quercus rubra L.) seedlings and trees differ in their response to ozone. Previous work reported reductions in net photosynthesis, carboxylation efficiency and quantum yield of mature tree leaves, whereas seedling processes were unaffected by the same ozone exposure. To further characterize differences in ozone response between seedlings and mature trees, we examined carbon partitioning and allocation in 32-year-old trees and 4-year-old seedlings of northern red oak after exposure to subambient (seasonal SUM00 dose (sum of all hourly ozone exposures) = 31 ppm-h), ambient (SUM00 dose = 85 ppm-h) and twice ambient (SUM00 dose = 151 ppm-h) ozone concentrations for three growing seasons. For mature trees, ozone exposure decreased foliar starch partitioning, increased starch partitioning in branches and increased (14)C retention in leaves. In contrast, starch partitioning in leaves and branches, and foliar (14)C retention in seedlings were unaffected by ozone exposure, but soluble carbohydrate concentrations in coarse and fine roots of seedlings were reduced. Differences in carbohydrate demand between seedlings and mature trees may underlie the higher leaf ozone uptake rates and greater physiological response to ozone in mature northern red oak trees compared with seedlings.  相似文献   

20.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号