首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasma concentrations of growth hormone (GH), thyroid stimulating hormone (TSH), insulin (IN), thyroxine (T4), and triiodothyronine (T3) in addition to metabolic parameters [N balance (NB), urinary 3-methylhistidine (TMH), urinary creatinine (CR), and urinary hydroxyproline (HP)] were measured in 4-mo-old Holstein steers divided equally among groups infected with Sarcocystis (I), noninfected ad libitum fed (C), and noninfected pair fed to I (PF) (7 steers per treatment). Effects of infection on these parameters beyond those attributable to altered dietary intake were determined using orthogonal contrasts (effect of intake, C vs I + PF; effect of infection, PF vs I). NB was higher in C than I and PF (P<.05) and lower in I than PF (P<.02). Hydroxyproline and CR were influenced by intake (P<.05) and HP excretion was reduced in association with infection (P<.05). Reduced intake was associated with lowered mean basal plasma concentrations of GH, IN, T3 and T4 (P<.05). Infection further reduced (P<.001) plasma T3 concentration.

Triiodothyronine and T4 responses following an intravenous bolus of thyrotropin releasing hormone (TRH) were measured. The magnitude of the responses in I and PF were lower than those observed in C (P<.05). Plasma T3 responses were further reduced in association with infection (P<.05). Insulin responses to intravenous arginine infusion (ARG) were also low in association with reduced intake. Growth hormone responses to TRH or ARG were affected by the level of feed intake only. These data suggest that hormonal perturbations associated with the insult of infection further compromise metabolism and the direction of nutrient partitioning that would ordinarily be associated with developmental growth in young steers beyond those responses anticipated from solely the reduction of feed intake.  相似文献   


2.
Five Holstein cows producing an average of 25.4 ± 6.4 kg/d and 347 ± 111 days in milk were used to study the changes in fatty acid composition in milk from lactating dairy cows during transition to and from pasture. The 45-d experiment was divided into 3 periods. During the first 2 d of the experiment (Period I), cows were fed a TMR diet containing 50% conserved forage and 50% grain. On day 3, cows were turned out to pasture and remained on all-pasture diet for 29 d (Period II). On day 32, cows were withdrawn from pasture and offered a TMR diet until day 45 (Period III). Milk yield was recorded daily, and milk fat content and fatty acid (FA) composition were determined daily for composite samples collected from a.m. and p.m. milkings. Data were analyzed using spline regression (H0 = zero slope) to determine whether there was any change in the concentration of a particular fatty acid after a specific time or whether it had stabilized. Cows produced an average of 25.2 ± 5.5, 13.7 ± 5.6, and 12.1 ± 4.8 kg/d of milk with 3.6, 4.2, and 3.6% fat during pre-pasture, pasture, and post-pasture diets, respectively. The conjugated linoleic acid (CLA) content was 0.45% of total fat during pre-pasture, reached to a maximum of 2.53% on day 23 into pasture and plateaued thereafter for the period. Milk fat C18:1 t-11 content was 2.89% of total fat during pre-pasture, reached a maximum of 7.95% after day 22 in pasture, and plateaued afterwards. The C18:2 content declined gradually from pre-pasture to pasture diet with no further decrease observed after day 22, while C18:3 content increased until day 7 on pasture. The post-pasture CLA content in milk fat reached a value similar to pre-pasture within 4 days after the cows were withdrawn from pasture. No change in other fatty acids was observed after day 7 once the cows were switched to post-pasture diet. In the present study, it took 23 days to establish the highest level of CLA in milk fat after turning cows out to pasture, whereas only 4 days were needed to bring it back to the original level once the cows were withdrawn from pasture. Other milk fatty acids were stabilized around day 23 after turning cows out to pasture and by day 7 after being withdrawn from pasture and put back on a TMR diet inside the barn.  相似文献   

3.
A total of 356 early lactation multiparous Holstein cows were used in a randomized complete block design to determine the effects of feeding extruded linseed on milk production and composition, and reproductive performance. Forty of these cows were randomly selected to study the effects of extruded linseed on milk fatty acid (FA) profile, individual feed intake and prostaglandin secretion. Cows were fed a 40:60 forage to concentrate ratio diet (17.9% CP, 27.7% NDF and 6.0% EE) ad libitum that was similar in composition between treatments except for the protein supplements that differed and were control (CTR: 4.9% extruded soybean) and linseed (LIN: 5.5% extruded linseed). Individual DM intake measured at 40 (23.0 kg/d) and 90 (24.2 kg/d) days in milk, and milk yield (45.0 kg/d) were not affected by treatment, but the lower (P < 0.05) milk fat percentage in cows fed LIN (2.65%) compared with CTR (2.86%) resulted in lower (P < 0.05) 4.0% fat-corrected milk yield for cows fed LIN (35.4 kg/d) compared with CTR (37.7 kg/d). Milk protein content was higher (P < 0.05) in LIN (3.04%) than in CTR (3.00%). The concentration of saturated FA was lower (P < 0.05) in milk fat from LIN (56.2%) compared with CTR (60.2%). Monounsaturated FA (35.7 vs. 32.7%) and polyunsaturated FA (8.0 vs. 6.9%) were higher in LIN (P < 0.05) than in CTR. Supplementation with LIN also increased (P < 0.05) the proportion of vaccenic acid (2.21 vs. 1.55%), total conjugated linoleic acid (0.91 vs. 0.72%) and n-3 FA (1.21 vs. 0.54%) in milk compared with CTR. Plasma concentrations of prostaglandin metabolite were numerically lower in LIN (106 pg/ml) compared with CTR (120 pg/ml) (P = 0.16) but reproductive performance was similar between treatments. In summary, extruded linseed reduced milk fat percentage and 4.0% fat-corrected milk yield and increased milk protein percentage and the content of healthy FA in milk without modifying DM intake, milk yield and reproductive performance.  相似文献   

4.
Two experiments were conducted to study the effects of growth hormone-releasing factor (GRF) and thyrotropin-releasing factor (TRF) administration on hormone concentrations in dairy cows. In the first trial, 12 cows were used on 5 consecutive days to determine the effect of four sc doses of GRF (0, 1.1, 3.3 and 10 μg•kg−1 BW) and three sc doses of TRF (0, 1.1 and 3.3 μg•kg−1 BW) combined in a factorial arrangement. GRF and TRF acted in synergy (P = .02) on serum growth hormone (GH) concentration even at the lowest dose tested and GH response to the two releasing factors was higher than the maximal response observed with each factor alone. TRF increased (P<.01) prolactin (Prl), thyrotropin (TSH), triiodothyronine (T3) and thyroxine (T4) concentrations similarly at the 1.1 and 3.3 μg•kg−1 doses and GRF did not interact (P>.40) with TRF on the release of these hormones. In the second trial, the effect of GRF (3.3 μg•kg−1 BW, sc) and TRF (1.1 μg•kg−1 BW, sc) was tested at three stages (18, 72 and 210 days) of lactation on serum Prl and TSH concentrations. Eighteen cows (n = 6 per stage of lactation) were used in two replicates of a 3 × 3 latin square. The TRF and GRF-TRF treatments were equipotent (P>.05) in increasing Prl and TSH concentrations. Prl and TSH responses were similar (P>.40) throughout lactation. In summary, GRF at doses ranging from 1.1 to 10.0 μg•kg−1 and TRF at doses ranging from 1.1 to 3.3 μg•kg−1 act in synergy on GH release and do not interact on Prl, TSH, T3 and T4 concentrations in dairy cows. Furthermore, Prl and TSH response to TRF are not affected by stage of lactation.  相似文献   

5.
The purpose of the present study was to determine experimental conditions to stimulate secretion of thyroid hormones (T3 and T4) with thyrotropin-releasing hormone (TRH) injections in suckling piglets during the first weeks of postnatal life. Three consecutive experiments were conducted. Four 10–20 d old piglets were i.m. injected with 0, 20, 100, 500 μg (experiment 1) or 0, 4, 20, 100 μg TRH/kg BW (experiment 2) according to a 4 × 4 latin square design involving different litters in each experiment. Blood samples were taken −15, −1, 15, 30, 45, 60, 90, 120 180 and 300 min after TRH injection in experiment 1, and −.25, −.08, .25, .5, 1, 2, 4, 6, 8, 12, 24, 30, 36, 48, 60 and 72 hr after TRH injection in experiment 2. T3 and T4 levels were significantly (P<.01) increased as soon as 30 and 45 min after TRH injection, respectively. Maximal levels of T3 and T4 were obtained 2 and 4 hr after the injection of 100 μg TRH. T3 and T4 returned to basal levels within 6 and 8 hr post injection, respectively. Plasma pGH levels were significantly (P<.001) increased 15 min after TRH injection in piglets injected with 500 μg. In experiment 3, 100 μg TRH/kg BW were injected i.m. either daily or every other day from .0 to 23 days of age. Results showed that T4 response to TRH did not decrease after repeated injections. These results indicate that daily i.m. injections of 100 μg TRH/kg BW can be used to increase thyroid hormone levels for at least 13 d in the young suckling piglet.  相似文献   

6.
The literature indicates that sire breed of calf influences beef calf performance. However, there is little information concerning sire breed of calf effects on reproduction in beef cows. In this experiment, Angus (A), Brahman (B), or Tuli (T) bulls were bred to 136 Brahman (B) cows to examine sire breed of calf influence on peripartum hormone profiles and the length of postpartum anestrus. Cows were bled from 7 d prepartum to 28 d postpartum to determine peripartum hormone concentrations. Cows carrying AB calves had greater (P < 0.05) prepartum estradiol-17β concentrations than did cows carrying BB and TB calves. Prepartum and postpartum progesterone concentrations did not differ between cows with AB, BB, and TB calves. Cows with TB calves had lower (P < 0.01) 13,14-dihydro-15-keto-prostaglandin F2 (PGFM) concentrations than did cows with AB and BB calves during the early postpartum period. Adjusting for birth weight removed the sire breed of calf effect on postpartum PGFM concentrations, but not prepartum estradiol-17β. Postpartum anestrus was shorter (P < 0.05) for cows nursing BB calves (84 ± 6 d) than for cows nursing AB (101 ± 6 d) or TB calves (110 ± 7 d). Adjustment for estradiol or PGFM concentrations did not reduce sire breed of calf effects on the length of postpartum anestrus. Further work is needed to determine how calf genotype may modulate the postpartum reproductive function of the dam.  相似文献   

7.
The control of growth is a complex mechanism regulated by several metabolic hormones including growth hormone (GH) and thyroid hormones. In avian species, as well as in mammals, GH secretion is regulated by hypothalamic hypophysiotropic hormones. Since thyrotropin-releasing hormone (TRH) and growth hormone-releasing factor (GRF) are potent GH secretagogues in poultry, we were interested in determining the influence of daily intravenous administration of either peptide or both simultaneously on circulating GH and IGF-I concentrations and whether an improvement in growth rate or efficiency would be obtained.

Male broiler chicks were injected once daily for a period of 21 days with either GRF (10 μg/kg), TRH (1 μg/kg) or both GRF and TRH (10 and 1 μg/kg respectively) between four and seven weeks of age. On the last day of the experiment, following intravenous injection of TRH, GRF or a combination of GRF and TRH, plasma GH levels were significantly (P<.05) increased to a similar extent in control chicks and in those which had received daily peptide injections for the previous 21 days. Circulating GH levels between 10 and 90 min post-injection were significantly (P<.05) greater and more than additive than GH levels in chicks injected with both GRF and TRH when compared to those injected with either peptide alone. Mean plasma T3 concentrations during that same time period were significantly elevated (P<.05) above saline-injected control chick levels in birds treated with TRH or GRF and TRH respectively, regardless of whether the chicks had received peptide injections for the previous 21 days. There was no evidence of pituitary refractoriness to chronic administration of either TRH or GRF injection in terms of growth or thyroid hormone secretion.

Despite the large elevation in GH concentration each day, growth rate, feed efficiency and circulating IGF-I concentrations were not enhanced. Thus the quantity or secretory pattern of GH secretion induced by TRH or GRF administration was not sufficient to increase plasma IGF-I concentration or growth.  相似文献   


8.
Fasting has severe effects on thyroid metabolism in the chicken: plasma thyroxine (T4) concentrations increase, whereas 3′,5,3-triiodothyronine (T3) concentrations decrease. In the present report we studied the effect of fasting at the level of: 1) the pituitary (plasma thyrotropin (TSH) concentrations; the sensitivity of thyrotrophs to corticotropin-releasing hormone (CRH) and TSH-releasing hormone (TRH)); and 2) the hypothalamus (TRH content). A regulatory role of corticosterone is discussed. One day of fasting resulted in a drop in plasma TSH concentrations. Fed and nonfed animals were treated with ovine CRH (oCRH) or TRH. The sensitivity of thyrotrophs to the respective hypothalamic hormones was increased when animals were subjected to a 1-d period of fasting. A 75% (TRH) and 50% (oCRH) increase in plasma TSH was recorded in fasted animals, whereas both secretagogues did not evoke any response in their fed counterparts. The drop in plasma TSH cannot, therefore, be attributed to a loss in sensitivity of thyrotrophs to hypothalamic stimulatory control. In an identical experiment, plasma TSH concentrations decreased, whereas hypothalamic TRH content was higher in fasted animals, suggesting a decreased hypothalamic TRH release toward the pituitary. In both fasting experiments, plasma corticosterone concentrations were increased after 1 d of fasting. Because an iv injection of corticosterone-elevated hypothalamic TRH contents and decreased plasma TSH concentrations, a corticosterone-induced TSH decrease during fasting is suggested through an action at the level of the hypothalamus.  相似文献   

9.
本试验选用黄土高丘陵沟壑区推广应用的玉米、燕麦、苜蓿裹包青贮及苜蓿干草为试验材料,旨在研究其在肉牛体外瘤胃发酵性能及组合效应,为其科学应用提供技术支持。将4种优质饲草按干物质基础组成7种不同比例组合,即C1(50%玉米青贮+50%燕麦青贮)、C2(50%玉米青贮+50%苜蓿青贮)、C3(80%玉米青贮+20%苜蓿干草)、C4(50%燕麦青贮+50%苜蓿干草)、C5(70%玉米青贮+10%燕麦青贮+20%苜蓿青贮)、C6(65%玉米青贮+15%燕麦青贮+25%苜蓿青贮)和C7(50%玉米青贮+20%燕麦青贮+30%苜蓿青贮)共构成11种发酵底物。结果表明:4种单一饲料在各时间点的产气量(GP)玉米青贮最高,苜蓿青贮最低(P<0.05);7种组合不同时间点产气特点为,C3的GP最高,C4最低(P<0.05)。4种单一饲料的快速降解部分产气量(a)和产气速率常数(c)分别为玉米青贮和苜蓿干草最高,与其他单一饲料存在显著差异(P<0.05);7种组合中的a和c均以C2最高;慢速降解部分产气量(b)和潜在产气量(a+b)均以C3最高,亦均显著高于其他组合(P<0.05)。体外发酵48 h后,4种单一饲料中玉米青贮的干物质消失率(DMD)显著高于其他3种(P<0.05);培养液的pH介于6.27~6.72,且各组间差异显著(P<0.05);氨态氮(NH3-N)浓度燕麦青贮最高(P<0.05)。7种组合的DMDC2显著低于C5和C7(P<0.05);pH介于6.40~6.69,其中C3显著低于其他6种(P<0.05);NH3-N的浓度C1与C2显著高于其他5种(P<0.05)。4种单一粗饲料的总挥发性脂肪酸(TVFA)为玉米青贮显著高于苜蓿青贮和干草(P<0.05);7种组合培养48 h后,培养液的TVFA浓度C2和C4显著低于C5和C6(P<0.05)。综上,玉米青贮的体外发酵GP、DMD、TVFA及乙酸浓度均最高;苜蓿青贮的体外发酵GP较低,发酵速度慢;不同组合的综合组合效应值(MFAEI)均为正值,由高到低依次为C4、C2、C5、C1、C3、C6、C7。  相似文献   

10.
Eight multiparous beef cows were used to examine the effects of intrauterine infusion of catecholestradiol (4-hydroxylated estradiol) on development and function of the first corpus luteum after parturition. Calves were weaned on day 1 (day 0 = parturition) to initiate formation of a corpus luteum (CL) by approximately day 10 or 11. Before CL formation, on days 5 to 9, cows received twice daily infusions of catecholestradiol (4 μg; n = 4) or vehicle (n = 4) into the uterine horn opposite the previous pregnancy. Plasma progesterone during the first estrous cycle was elevated longer (P<.001) and reached a higher (P<.001) concentration in cows treated with catecholestradiol. The decline in progesterone was associated with an increase in plasma 13,14-dihydro, 15-keto-prostaglandin F2 (PGFM) in all cows infused with catecholestradiol. In contrast, a rise in PGFM at the end of the first short cycle was detected in only one of four cows treated with vehicle. Furthermore, PGFM concentrations were linearly related (R2 = .870; P<.001) to concentrations of progesterone. Estradiol-17β concentrations were not different during the infusion period, but after formation of the first CL, estradiol remained elevated (P<.01) in cows that received vehicle. Results of this experiment suggest that exposure of postpartum beef cows to catecholestradiol extended luteal function in association with enhanced PGFM release.  相似文献   

11.
Molt induced by infusion of a gonadotropin-releasing hormone agonist (GnRH-A, ([D-leu6, Pro9]-GnRH N-ethylamide]) or feed withdrawal (FW) has been used as a model to study interactions between ovarian activity and thymosin β4 during molting in domestic hens. Thirty-three laying hens were divided into three groups: 1, controls, 2, GnRH-A infusion induced molt (GnRH-A), or 3, FW induced molt. All groups had reduced daylength. Blood was sampled weekly and assayed for concentrations of thymosin β4 and progesterone (P4). Plasma P4 concentrations were significantly depressed in both treatment groups compared to controls, indicating ovarian regression. Plasma P4 concentrations had returned to control values in the GnRH-A group by 28 d after the start of treatment, while P4 was still depressed in the FW group at day 42 when the experiment ended. Plasma concentrations of thymosinβ4 were elevated relative to controls from day 7 through day 14 in the GnRH-A group and from day 7 until day 28 in the FW group. It is concluded that plasma concentrations of thymosin β4 are elevated during molting in domestic hens, but the elevation is not attributable to depressed P4 concentrations.  相似文献   

12.
Lactating Holstein cows were used to assess the effect of bovine somatotropin (bST; n = 8) and fasting (FAST; n = 4) on ligand binding to β-adrenergic (BAR) and TYP e-1 adenosine (A1R) receptors in adipose tissue. Cows received exogenous bST (sometribove; 40 mg/d) or no hormone (control) for 4 d in a single-reversal design with a 7-d interval between treatment periods. Subcutaneous adipose tissue biopsies were taken on day 4 of each treatment. Eight d after the bST regimen, 4 cows were fasted for 3 d and adipose biopsies were taken. Ligand binding was quantified with a postnuclear, total adipose tissue membrane preparation (100,000 × g pellet). Binding to BAR and A1R was assessed with the antagonists [125I]iodocyanopindolol (ICP) and [3H]8-cyclopentyl-1,3-dipropylxanthine (DCPCX), respectively. The binding affinity (Kd) of BAR for ICP was not affected by bST but was enhanced by FAST; maximal binding (Bmax) was increased with bST treatment (P < 0.06) and reduced by FAST (61%, P < 0.01). Kd values for DCPCX binding to A1R were not changed by bST or FAST. bST did not affect Bmax for A1R; however, FAST reduced the Bmax by 38%. Data highlight the differential regulation of BAR and A1R by bST and FAST.  相似文献   

13.
Nonpregnant Hereford cows (n = 70) were used to determine the effect of nutrient intake and body condition on reproductive and thyroid function. Body condition scores (BCS; 1 = emaciated; 9 = obese) of cows averaged 5.0 +/- .2 on July 1, and cows were fed for 4 mo either to lose weight and BCS (thin; n = 22), to maintain weight and BCS (moderate; n = 24), or to gain weight and BCS (fat; n = 24). After November 1, cows received a complete ration to maintain weight and BCS. Cows were slaughtered in December (six thin, eight moderate, and eight fat cows) or the subsequent March (16 cows per group). Before slaughter, cows were given two injections of prostaglandin F2 alpha (PGF) 11 d apart. Six days after the second PGF injection, cows were simultaneously treated with 100 micrograms of gonadotropin releasing hormone (GnRH; i.m.) and 100 micrograms of thyrotropin releasing hormone (TRH; i.v.) and serum samples were obtained. The BCS of cows at slaughter (8 d after PGF) averaged 3.4, 5.3, and 7.1 (P less than .01) and carcass energy content averaged 243, 432, and 714 Mcal (P less than .01) for thin, moderate, and fat cows, respectively. Wet ovarian (P less than .001) and corpora lutea (P less than .01) weights were heavier for fat cows. Content of LH in the pituitary gland and concentrations of thyroxine (T4) in serum after GnRH/TRH were not influenced by nutrient intake or BCS. However, thin cows had greater concentrations (P less than .05) of LH in serum after GnRH/TRH than did moderate or fat cows. We conclude that nutrient intake and body energy reserves of beef cows influenced ovarian function and LH in serum after treatment with GnRH.  相似文献   

14.
Studies were conducted to determine the specificity and cause of altered pituitary hormone secretion when ewes ingest endophyte-infected (Acremonium coenophialum) GI-307 tall fescue (toxic fescue). Plasma concentrations of prolactin (PRL) but not growth hormone (GH) or thyroid stimulating hormone (TSH) in ewes grazing toxic fescue were significantly lower (P < .01) than concentrations measured in ewes grazing orchardgrass (OG). Comparing hormone secretory responses of ewes grazing each grasstype, ewes on toxic fescue released less PRL following thyrotropin releasing hormone (TRH) challenge than ewes on OG. TSH responses to TRH were not affected by grasstype. At this dose of TRH, GH secretion was not significantly affected in either group of ewes. In a separate study, dopamine hydrochloride (DA) was infused into control ewes to define the effect of a pure dopamine agonist on basal and TRH-stimulated secretion of PRL, GH and TSH. DA depressed both basal and TRH-stimulated secretion of PRL without affecting the basal concentrations or responses of GH or TSH. Based on the assumption that the active agent in toxic fescue responsible for the observed hypoprolactinemia was a dopaminergic agonist, haloperidol (HAL), a DA receptor blocking drug, was administered to ewes grazing toxic fescue or OG. HAL evoked significant PRL secretion unaccompanied by any GH or TSH effect in both toxic fescue and OG ewes. Administration of HAL resulted in a gradual increase over 4 hr in PRL in toxic fescue ewes and prolonged the duration of the PRL response to TRH. No differences in circulating plasma concentrations of DA, epinephrine or norepinephrine were measured in ewes on troxic fescue or OG.

Alterations in pituitary hormone secretion due to toxic factors in fescue were confined to PRL. Hormone secretory responses to TRH and HAL suggest that the effects on PRL are mediated through dopamine-like activity in toxic fescue.  相似文献   


15.
The effects of vasoactive intestinal polypeptide (VIP) and growth hormone releasing factor (GRF:hpGRF(1–29)-NH2) on the release of growth hormone (GH) from anterior pituitaries from cows were examined by using an in vitro superfusion system. The pituitaries were excised randomly from cycling cows, dissected to obtain medial portions, and minced to obtain cubes with approximate dimensions of 1.5mm on a side. For each perifusion setup, 5 pieces of pituitary tissues were chambered and flushed with modified KRB solution saturated with 95% O2-5% CO2 at 38C. Perifusion with media containing 10−6 and 10−7M VIP for 30 min induced a significant release of GH during the treatments (P<0.05). VIP (10−8M) increased GH levels significantly (P<0.05), but to a minor degree. Perifusion with the media containing 10−6, 10−7 and 10−8M GRF for 30 min markedly increased the GH concentration and the effects continued up to 90 min after termination of the perifusion of the peptide (P<0.05, P<0.01). The GH releasing effects of GRF could be seen at doses as low as 10−11M GRF (P<0.05, P<0.01).

These findings indicate that the GH releasing effect of VIP is less potent that that of GRF in cows.  相似文献   


16.
A radioimmunoassay (RIA) based on anti-equine prolactin antiserum and radioiodinated canine prolactin was used to assess the dose response of plasma prolactin to thyrotropin releasing hormone (TRH) in mares in the nonbreeding season (winter) and in mares in estrus in the breeding season (summer). Mares were administered TRH intravenously and blood samples were collected via jugular catheters at −15, 0, 15, 30, 45, 60, 90, 120, 180 and 240 min relative to injection. Doses of TRH were 0, .08, .40, 2.0 and 10.0 mg per mare (n = 3 per dose within each season). The prolactin response was assessed by absolute hormonal concentrations before and after TRH injection and by net area under the curve. Prolactin concentrations in plasma before injection of TRH were higher (P < .01) in estrous mares in summer than in anestrous mares in winter (4.8 vs 1.3 ng/ml). Moreover, there was a greater (P < .01) response to TRH injection in estrous mares than in anestrous mares. Based on areas under the curve, there was an effect of season (P < .01) and of TRH dose (P < .01) as well as a season-dose interaction (P < .01). In general, there was little or no prolactin response to any dose of TRH in anestrous mares in winter when pre-TRH concentrations were low. In contrast, there was an increase in the prolactin response with increasing doses of TRH up to 2.0 mg in estrous mares in summer; 2.0 and 10.0 mg of TRH resulted in similar prolactin secretion. We conclude 1) that prolactin secretion in the horse is stimulated by TRH as has been reported for other species and 2) that prolactin concentrations and the TRH-induced secretion of prolactin are greater in estrous mares in summer than in anestrous mares in winter.  相似文献   

17.
The effects of propylthiouracil (PTU)-induced thyroid hormone imbalance on GH, TSH and IGF-I status in cattle were examined. In the first study, four crossbred steers (avg wt 350 kg) were fed a diet dressed with PTU (0, 1, 2 or 4 mg/kg/d BW) in a Latin square design with four 35-d periods. On day 29 in each period, steers were challenged with an intrajugular bolus of thyrotropin releasing hormone (TRH, 1.0 μg/kg). Blood samples were obtained to assess the change in plasma GH and TSH as affected by PTU. Plasma IGF-I was measured from blood samples obtained before and after (every 6 hr for 24 hr) intramuscular injection of bovine GH (0.1 mg/kg, day 31). Doses of 1 and 2 mg/kg PTU increased plasma T4 (P<.01). At 4 mg/kg, PTU depressed T4 concentrations to 30% of control (P<.01). Plasma T3 linearly decreased with increasing doses of PTU (P<.01). Plasma TSH increased when PTU was fed at 4 mg/kg (P<.05) while the TSH response to TRH declined with increasing PTU (P<.02). Neither basal nor TRH-stimulated plasma concentration of GH was affected by PTU; the IGF-I response to GH tended to increase at the 1 and 2 mg/kg PTU (P<.01). In a second study 24 crossbred steers were fed PTU (1.5 mg/kg) for 119 d in a 2 × 2 factorial design with implantation of the steroid growth effector, Synovex-S (200 mg progesterone + 20 mg estradiol), as the other main effect. Basal plasma GH and IGF-I were not affected by PTU treatment. Synovex increased plasma concentration (P<.01) of IGF-I without an effect on plasma GH. The data suggest that mild changes in thyroid status associated with PTU affects regulation of T3, T4 and TSH more than GH or IGF-I in steers.  相似文献   

18.
The aim of the experiment was to determine the acute and chronic effects of the β-agonist, cimaterol, on plasma hormone and metabolite concentrations in steers. Twelve Friesian steers (liveweight = 488 ± 3 kg) were randomly assigned to receive either 0 (control; n=6) or .09 mg cimaterol/kg body weight/day (treated; n=6). Steers were fed grass silage ad libitum. Cimaterol, dissolved in 140 ml of acidified distilled water (pH 4.2), was administered orally at 1400 hr each d. After 13 d of treatment with cimaterol or vehicle (days 1 to 13), all animals were treated with vehicle for a further 7 d (days 14 to 20). On days 1, 13 and 20, blood samples were collected at 20 min-intervals for 4 hr before and 8 hr after cimaterol or vehicle dosing. All samples were assayed for growth hormone (GH) and insulin, while samples taken at −4, −2, 0, +2, +4, +6 and +8 hr relative to dosing were assayed for thyroxine (T4), triiodothyronine (T3), cortisol, urea, glucose and non-esterified fatty acids (NEFA). Samples taken at −3 and +3 hr relative to dosing were assayed for IGF-I only. On day 1, cimaterol acutely reduced (P<.05) GH and urea concentrations (7.6 vs 2.9 ± 1.4 ng/ml; and 6.0 vs 4.9 ± 0.45 mmol/l, respectively; mean control vs mean treated ± pooled standard error of difference), and increased (P<.05) NEFA, glucose and insulin concentrations (160 vs 276 ± 22 μmol/l, 4.1 vs 6.2 ± 0.15 mmol/l and 29.9 vs 179.7 ± 13.9 μU/ml, respectively). Plasma IGF-I, T3, T4 and cortisol concentrations were not altered by treatment. On day 13, cimaterol increased (P<.05) GH and NEFA concentrations (7.7 vs 14.5 ± 1.4 ng/ml and 202 vs 310 ± 22 mEq/l, respectively) and reduced (P<.05) plasma IGF-I concentrations (1296 vs 776 ± 227 ng/ml). Seven-d withdrawal of cimaterol (day 20) returned hormone and metabolite concentrations to control values. It is concluded that : 1) cimaterol acutely increased insulin, glucose and NEFA and decreased GH and urea concentrations, 2) cimaterol chronically increased GH and NEFA and decreased IGF-I concentrations, and 3) there was no residual effect of cimaterol following a 7-d withdrawal period.  相似文献   

19.
The objective of this study was to examine the effects of somatotropin (ST) on porcine reproductive and metabolic statuses during early pregnancy. Four pregnant crossbred gilts received 6 mg of recombinant porcine somatotropin (rpST) daily from days 10 to 27 after artificial insemination while six pregnant gilts served as controls. Blood samples were taken on days 8, 10, 12, 14, 18, 22, and 27 prior to rpST injections (8:00 h) and subsequently at 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, and 20:00 h. On all remaining days of treatment, samples were taken once daily before injections (8:00 h). The samples were assayed for the metabolic hormones: ST, insulin-like growth factor I (IGF-I), insulin, thyroxine (T4), triiodothyronine (T3), and cortisol; for metabolites: free fatty acids (FFA) and glucose; and for the reproductive hormones: luteinizing hormone (LH), progesterone, estradiol-17β, estrone sulfate, and prostaglandin F2. Delivery of rpST daily induced a 20- to 40-fold increase in plasma ST concentrations. Moreover, repeated administration of rpST resulted in a continuous increase in plasma IGF-I concentration (P<0.001), from 191.0±22.3–340.0±15.3 ng/mL 24 h after initial injection to 591.3±46.8 ng/mL after final injections. Mean serum insulin tended to be greater in rpST-treated gilts. Blood concentrations of T4 were reduced (P<0.05) from day 14 of gestation in treated gilts while T3 concentrations remained unchanged. Concentrations of both glucose and FFA were greater (P<0.01) and cortisol concentrations were unchanged in treated gilts. Changes in reproductive steroid hormones were minimally affected. Circulating progesterone (P=0.078), and estradiol-17β (P=0.087) concentrations tended to be lower in treated animals. These data show that treatment of pregnant gilts with rpST during early gestation mainly impacts metabolic rather than reproductive status.  相似文献   

20.
The objective of the research was to determine the relationship between circulating 17β-estradiol (E2) and secretion of luteinizing hormone (LH) in cows. A second objective was to determine if response to E2 was influenced by interval between ovariectomy and the start of E2 treatment. Thirty-one nulliparous cows 3 yr of age were randomly assigned to a 2 × 4 factorial arrangement of treatments. Sixteen cows were ovariectomized at 18 mo of age (long term), and the other 15 cows were ovariectomized at 36 mo of age (short term). At the time of ovariectomy of cows in the short term group, 11 cows in the short term group and 12 cows in the long term group were implanted subcutaneously with 1, 2 or 4 polydimethylsiloxane capsules containing E2. The other eight cows served as non-implanted controls (n=4-short term, n=4-long term). All cows were fitted with jugular vein catheters on day 29 of treatment, and on day 30 blood samples were collected at 12-min intervals for 6 hr. At the end of 6 hr, luteinizing hormone-releasing hormone (LHRH) was administered and blood sampling continued at 12-min intervals for an additional hour. Serum was analyzed for LH and E2. Variables of LH secretion analyzed were mean concentration, frequency of pulses, amplitude of pulses and maximum concentration after LHRH. There were no significant interactions for any of the variables of LH among cows ovariectomized for the long and short term. There was a significant linear increase in mean concentration of LH with increased circulating concentration of E2. Frequency of LH pulses was not affected by circulating concentration of E2. As circulating concentration of E2 increased, amplitude of LH pulses increased and response to LHRH increased - resulting in an increase in mean LH. Interval from time of ovariectomy to the start of E2 treatment only had a minor influence on mean concentration of LH and profile of LH concentrations in circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号