首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A previous investigation indicated that when hens were exposed to 2% oxygen in argon (anoxia) EEG suppression and loss of SEPs occurred at 17 and 29 s after exposure. In this study, hens were exposed to 49% carbon dioxide in air (hypercapnic hypoxia) or 31% carbon dioxide with 2% oxygen in argon (hypercapnic anoxia) and their spontaneous electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were investigated. The results indicated that EEG suppression and loss of SEPs occurred in 11 and 26 s, respectively, in hypercapnic hypoxia. These events occurred at 11 and 19 s, respectively, after exposure to hypercapnic anoxia. These results indicated that, with regard to preslaughter stunning/killing of chickens, a mixture of 31% carbon dioxide with 2% oxygen in argon resulted in a more rapid loss of evoked responses in the brain when compared with 49% carbon dioxide in air or with 2% oxygen in argon. It is concluded that stunning chickens with low concentrations of carbon dioxide in argon would result in a more rapid loss of consciousness.  相似文献   

2.
1. The effectiveness of water bath electrical stunning of chickens with a constant root mean square (rms) current of 100 mA per bird delivered for 3 s using 100, 200, 400, 800 and 1500 Hz sine wave alternating current (AC) was investigated in layer hens. The quantitative changes occurring in the electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were used to determine the effectiveness of stunning. The changes occurring in the EEG were evaluated using Fast Fourier Transformations (FFT) and the SEPs were averaged to determine whether they were present or abolished. 2. The results of FFT indicated that stunning of chickens with a constant rms current of 100 mA per bird using 100 or 200 Hz induced epileptiform activity in all the hens, immediately followed by a reduction in the total (2 to 30 Hz) and relative (13 to 30 Hz) power contents in the EEG frequency bands indicative of unconsciousness and insensibility. The SEPs were abolished in the majority of hens stunned with 100 Hz and all the hens stunned with 200 Hz. 3. By contrast, stunning using 400, 800 or 1500 Hz failed to induce epileptiform activity in all the birds, the total and relative power contents in the EEG frequency bands showed a substantial increase, rather than reduction, and the SEPs were also retained in the majority of chickens. It is therefore suggested that stunning using these frequencies failed to stun them satisfactorily. In these birds, occurrence of a painful arousal, rather than unconsciousness, could not be ruled out. 4. It is therefore suggested that water bath electrical stunning of chickens with a minimum rms current of 100 mA per bird delivered using 100 or 200 Hz would be adequate to ensure bird welfare under commercial conditions, provided both the carotid arteries in the neck are severed at slaughter. On humanitarian and bird welfare grounds, a rms current of greater than 100 mA per bird should be applied whilst using frequencies of 400 Hz or more of sine wave AC for water bath electrical stunning of chickens.  相似文献   

3.
The spontaneous electroencephalogram (EEG) and somatosensory evoked potentials (SEPs) were examined in 17 hens before and during stunning in 45 per cent carbon dioxide. The results indicated that EEG suppression and loss of SEPs occurred in 21 +/- 4 s and 30 +/- 2 s, respectively, after exposure to carbon dioxide, eventually leading to EEG silence in 101 +/- 18 s. Convulsions occurred 15 seconds after the loss of SEPs, suggesting that the hens convulsed while they were unconscious. It is concluded that the induction of anaesthesia can be rapid in carbon dioxide stunning and in this respect carbon dioxide is potentially suitable for stunning poultry under commercial conditions.  相似文献   

4.
1. Six week-old broiler chickens implanted with electroencephalogram (EEG) recording and somatosensory stimulating electrodes were exposed to either 90% argon in air, a mixture of 30% carbon dioxide and 60% argon in air or a mixture of 30% oxygen and 40% carbon dioxide (balance nitrogen) for 2 min, to determine the times to onset of changes in spontaneous EEG and the loss of somatosensory evoked potentials (SEPs) and thus unequivocal loss of consciousness. 2. In addition, after a 2 min exposure to the carbon dioxide-oxygen mixture, some broilers were allowed to recover in air and their EEGs and SEPs were continuously recorded until the return of normal EEG and SEPs. During this period, the time to return of response to comb pinching was also determined in 10 broilers. 3. All broilers exposed to either argon or the carbon dioxide-argon mixture died within 2 min, whereas, only 3 out of 17 broilers died during the 2 min exposure to the carbon dioxide-oxygen mixture. 4. During exposure to argon, unlike the other 2 gas mixtures, the majority of broilers showed high amplitude, low frequency electrical activity in the EEG on average at 10 s. The mean times to onset of EEG suppression were 17, 19 and 40 s after exposure to argon, the carbon dioxide-argon mixture and the carbon dioxide-oxygen mixture, respectively. An isoelectric EEG occurred on average at 58 and 41 s after exposure to argon and the carbon dioxide-argon mixture, respectively. An isoelectric EEG did not occur in broilers which were exposed to the carbon dioxide-oxygen mixture. 5. The SEPs were abolished in broilers on average 32 and 24 s after exposure to argon and the carbon dioxide-argon mixture, respectively. During exposure of broilers to the carbon dioxide-oxygen mixture the SEPs were abolished in the majority of birds on average at 47 s, however, 2 out of 14 birds retained their SEPs for the entire period of 2 min exposure to this gas mixture. 6. During the recovery after exposure to the carbon dioxide-oxygen mixture, response to comb pinching and SEPs returned either at the time of, or soon after, the onset of high frequency electrical activity in the suppressed EEG of broilers. The mean times to return of response to comb pinching and SEPs were 52 and 43 s, respectively. 7. Based on the time to onset of EEG suppression or loss of SEPs, exposure of broilers to either 90% argon in air, or a mixture of 30% carbon dioxide and 60% argon in air, resulted in quicker loss of consciousness than during exposure to a mixture of 40% carbon dioxide, 30% oxygen and 30% nitrogen. The time to return of consciousness after a 2 min exposure to the carbon dioxide-oxygen mixture was also found to be rapid.  相似文献   

5.
The spontaneous EEG and somatosensory evoked potentials (SEPs) were examined in chickens before and after electrical stunning using a waterbath stunner. Fifty-four per cent of the birds became epileptic and lost their SEPs, and 17% were non-epileptic and appeared to retain their SEPs. It was concluded that there was a reasonably close association between the presence of epileptiform activity in the EEG and the absence of SEPs following electrical stunning, but that the absence of SEPs could be preferred as an indicator of an effective stun on conceptual grounds.  相似文献   

6.
1. Fast Fourier transformations (FFTs) of electrocorticogram (ECoG) signals and averaging of somatosensory evoked potentials (SEPs) were used for assessing the impact of electrical stunning of ducks in a waterbath set to deliver a constant current of 150 mA, 600 Hz alternating current (AC) for 4 s. The effectiveness of stunning was determined on the basis of induction of epileptiform activity in the ECoG followed by a decrease in total power content to less than 10% of pre-stun values and abolition of SEPs. 2. One out of 10 birds was killed by the stun. FFT analysis of the ECoG signals of the remaining 9 birds showed that only one bird had a decrease of the total power to less than 10% of the pre-stun values for up to 70 s post-stun. The SEPs were retained in 6 out of 9 ducks and and 4 of them retained the evoked responses throughout the post-stun period. In the two birds showing abolition of SEPs, this was associated with a decrease in the total power content to below 10% of the pre-stun value. 3. The present experiment confirmed that the abolition of SEPs and the decrease of the total power below 10% of the pre-stun value for assessing unconsciousness after an electrical stunning in various species are also applicable to ducks. Based on this, it is concluded that electrical waterbath stunning of ducks using 150 mA of 600 Hz AC is ineffective.  相似文献   

7.
Changes in the somatosensory evoked potentials (SEPs) and spontaneous electroencephalogram (EEG) in hens were investigated during stunning with a mixture of 30 per cent carbon dioxide in argon with 5 per cent residual oxygen. The results showed that the SEPs were lost on average in 17 seconds (maximum 28 seconds), which is similar to the 19 seconds (maximum 32 seconds) reported while stunning hens with a mixture of 30 per cent carbon dioxide in argon with 2 per cent residual oxygen. The spontaneous EEG showed suppression and a quiescent phase at 14 and 58 seconds, respectively. It is concluded that a mixture of 30 per cent carbon dioxide in argon with 2 per cent residual oxygen would be ideally suited for batch stunning chickens and any inadvertent increase in the residual oxygen level up to 5 per cent in the stunning atmosphere would not lead to inadequate stunning or recovery of consciousness before neck cutting.  相似文献   

8.
A method was developed to record cortical somatosensory evoked potentials (SEP) from thoracic and pelvic limb stimulation in cows. Recordings were similar in latency and amplitude to those reported for horses. Correction for conduction pathway length did not alter the average latency values because the cows of the study were uniform in size; however, the data provided will enable use of this normative data with smaller or larger individual animals. Although latency variability for the SEP peaks was low, variability of the amplitude measurements was high. This observed variability was similar to that seen in other species. Validity of the recorded responses was indicated by lack of a tibial nerve SEP in 1 cow that had been given a tibial nerve conduction block, using lidocaine, and by repeatability of the response in 2 recordings taken 1 year apart in the same cow.  相似文献   

9.
The effects of head only or waterbath electrical stunning on somatosensory evoked responses in the brain of turkeys were examined. When head only stunning with a sinusoidal AC of 50 Hz was followed within 15 s by neck cutting the evoked responses were absent following the stun. When neck cutting was not performed, the evoked responses returned from 30 s after the stun. When currents between 120 and 250 mA were used in a waterbath stunner some birds retained their evoked responses immediately after the current was applied. The proportion of birds that retained their responses after the stun was not related to the level of the current that was applied.  相似文献   

10.
Changes in the spontaneous electrocorticogram (ECoG) and somatosensory evoked potentials (SEPs)were recorded in 12 pigs in each of three gas killing treatments. The treatments were 90% argon in air with 2% residual oxygen; a mixture of 30% carbon dioxide and 60% argon in air with 2% residual oxygen; or 80–90% carbon dioxide in air. The mean times to loss of SEPs were 15, 17 and 21 s, respectively. The mean time to loss of SEPs recorded during killing with a high concentration of carbon dioxide was significantly longer than those recorded for the other two gas killing treatments (P <0.05). Slow waves (high amplitude and low frequency) appeared on average 15 s after exposure to argon. In some pigs killed with the carbon dioxide-argon mixture, a decrease in the frequency of electrical activity was apparent, although slow waves did not appear during killing with a higher concentration of carbon dioxide. A suppressed ECoG (reduction in amplitude of signals) was recorded at 22 and 20 s respectively, during exposure to the carbon dioxide-argon mixture and 80–90% carbon dioxide in air, but the onset of ECoG suppression could not be determined exactly during exposure to 90% argon in air. The time to onset of an isoelectric ECoG was 54, 39 and 32 s after exposure to argon, carbon dioxide-argon mixture and a high concentration of carbon dioxide, respectively. The mean time to the onset of an isoelectric ECoG during exposure to argon was significantly longer than that recorded for the other two gas killing treatments (P <0.05). Based on the time to loss of SEPs, it is concluded that during killing with a high concentration of carbon dioxide, pigs would have to endure a moderate to severe respiratory distress induced with this gas for a considerable period of time prior to the loss of brain responsiveness. Argon-induced induced anoxia appears to be the first choice from a welfare point of view for killing pigs, based on its lack of aversive properties and its effectiveness in rapidly abolishing brain responsiveness. A mixture of 30% carbon dioxide and 60% argon in air is considered to be more humane than using a high concentration of carbon dioxide, as the time to loss of brain responsiveness is similar to that using 90% argon in air.  相似文献   

11.
1. The effect of stunning current on the time to recovery of physical activity, and on somatosensory evoked potentials (SEPs) in the brain, was examined in broiler chickens. 2. Increasing stunning current was associated with an increase in the time to recovery of tension in the neck muscles and with an increase in the incidence of loss of SEPs. 3. Currents greater than 105 mA per bird provided 52 s or more of apparent insensibility; currents greater than 120 mA were associated with absence of SEPs following the stun.  相似文献   

12.
Somatosensory evoked responses (SEP) in a turkey's brain were determined after water-bath stunning with a 150-mA (constant current) delivered with 50, 300 or 600 Hz, or with 75 mA, delivered with 50-Hz alternating current (AC) in order to evaluate the effectiveness of stunning. Ninety-four BUT 9 turkey hens 12 weeks of age were surgically implanted with EEG recording and left wing nerve stimulating electrodes 4 hours before stunning. They were individually stunned by immersion of the head and upper part of the neck in a water bath for 4 s. Using a 150-mA current, all birds stunned at 50 Hz showed cardiac arrest and a flat EEG immediately after the stun with no SEP recovery. The incidence of cardiac arrest at stunning decreased with increasing current frequency but SEP were lost in all birds. In birds that survived the stun, the duration of SEP abolition was on average 69 and 34 seconds at 300 and 600 Hz, respectively. Stunning with a 75-mA AC, delivered with 50 Hz, induced cardiac arrest in 32 per cent of turkeys. SEP were abolished in only 71 per cent of the birds that survived the stun, with an average duration of SEP of 66 seconds. The results indicate that increasing the frequency of a 150-mA AC current leads to a decreased stunning efficiency. A current of 75 mA per bird is unacceptable since 29 per cent of the birds do not show SEP abolition.  相似文献   

13.
The aim of this study was to develop a technique for recording electrical activity of the equine cerebral cortex following application of a noxious electrical stimulus to the maxillary branch of the trigeminal nerve in order to investigate trigeminal nerve neurophysiology in control and headshaking horses. Triphasic somatosensory evoked potentials (SEPs) were recorded using subcutaneous needle electrodes in four control and four headshaking horses under general anaesthesia. Dural electroencephalography electrodes were used to record SEPs in one further control and one further headshaking horse. Headshaking horses appeared to have decreased middle latency and inter-peak intervals following stimulation of the trigeminal nerve compared with control horses, supporting abnormal trigeminal nerve physiology in equine headshaking.  相似文献   

14.
15.
16.
OBJECTIVE: To determine somatosensory evoked potentials (SEPs) in dogs with degenerative lumbosacral stenosis (DLS) and in healthy dogs. STUDY DESIGN: Clinical and experimental study. ANIMALS: Dogs with DLS (n = 21) and 11 clinically normal dogs, age, and weight matched. METHODS: Under anesthesia, the tibial nerve was stimulated at the caudolateral aspect of the stifle, and lumbar SEP (LSEP) were recorded percutaneously from S1 to T13 at each interspinous space. Cortical SEP (CSEP) were recorded from the scalp. RESULTS: LSEP were identified as the N1-P1 (latency 3-6 ms) and N2-P2 (latency 7-13 ms) wave complexes in the recordings of dogs with DLS and control dogs. Latency of N1-P1 increased and that of N2-P2 decreased as the active recording electrode was moved cranially from S1 to T13. Compared with controls, latencies were significantly delayed in DLS dogs: .8 ms for N1-P1 and 1.7 ms for the N2-P2 complex. CSEP were not different between groups. CONCLUSIONS: Surface needle recording of tibial nerve SEP can be used to monitor somatosensory nerve function of pelvic limbs in dogs. In dogs with DLS, the latency of LSEP, but not of CSEP, is prolonged compared with normal dogs. CLINICAL RELEVANCE: In dogs with lumbosacral pain from DLS, the cauda equina compression is sufficient to affect LSEP at the lumbar level.  相似文献   

17.
Three hundred and twenty broilers were stunned for 2 minutes in batches of 10 per crate in four treatments: 45 per cent carbon dioxide; 55 per cent carbon dioxide; 2 per cent oxygen, or 5 per cent oxygen presented as air diluted by argon. The number of survivors and the time to resumption of consciousness were recorded using the time to eye opening and response to comb pinching as indicators of consciousness. In 45 per cent and 55 per cent carbon dioxide and 2 per cent oxygen, 28, none and eight birds, respectively, survived out of 100 in each group. In 5 per cent oxygen the birds were still fully conscious after a 2 minute exposure period, and the test was discontinued. The time to recovery could be rapid after stunning in both the gases. It is suggested that a concentration of 55 per cent carbon dioxide or less than 1 per cent oxygen are required to kill broilers within a 2 minute exposure period, and that care should be taken to ensure that there is sufficient turbulence within the stunning chamber to avoid air pockets being trapped between the birds.  相似文献   

18.
Reasons for performing study: There is a need for objective evaluation and quantification of the efficacy of analgesic drugs and analgesic techniques in horses. Objectives: To determine whether lumbosacral spinal cord somatosensory evoked potentials (SSEP) can be a useful and reliable tool to assess nociception in equines. Methods: SSEPs and electromyograms (EMG) from the epaxial muscles were recorded simultaneously, following electrical stimulation applied to the distal hindlimb in lightly anaesthetised Shetland ponies (n = 7). In order to validate the model, the effect of increasing stimulus intensity was documented and the conduction velocities (CV) of the stimulated nerves were calculated. The effect of epidurally applied methadone (0.4 mg/kg bwt) in a randomised, crossover design was investigated. Results: Two distinct complexes (N1P1 and N2P2) were identified in the SSEP waveform. Based on their latency and conduction velocity and the depressant effect of epidurally applied methadone, the SSEP N2P2 was ascribed to nociceptive Aδ‐afferent stimulation. The SSEP N1P1 originated from non‐nociceptive Aβ‐afferent stimulation and was not influenced by epidurally applied methadone. Conclusions and potential relevance: The nociceptive Aδ component of the SSEP, the N2P2 complex, is presented as a valid and quantitative parameter of spinal nociceptive processing in the horse. Validation of the equine SSEP model enables the analgesic effects of new analgesics/analgesic techniques to be quantified and analgesia protocols for caudal epidural analgesia in equidae improved.  相似文献   

19.
Stunning of poultry is still not solved satisfactorily. This concerns the requirements of animal welfare, meat quality and working conditions in the lairage, stunning and debleeding area. In an investigation of combined CO2-/O2-stunning in a new gas stunning system stress reactions of the animals during the induction phase and stunning effectivity were recorded in 7,000 chicken and 3.825 turkeys. During the induction phase (here: chicken 41 sek./turkeys 25-65 sec.) the animals first staid calm and then showed beak-opening as a consequence of the breathing stimulating effect of CO2. As a further sign of the aversiveness against CO2 the animals showed head shaking and wing flapping. The used settings of gas concentrations and stunning time in the system investigated lead to a very deep stunning resp. Killing of the animals. Therefore the debleeding cut could be performed late (chicken 44-55 sec., turkeys 54-90 sec.) after leaving the system without animals regaining consciousness. The stunning of turkeys with a mixture of CO2 and oxygen is an improvement according to animal welfare requirements because unnecessary pain and suffering, happening very often with electrical stunning, can be avoided. As far as animal welfare in chicken stunning is concerned it must be evaluated if gas stunning means an improvement because stress during the till now relatively long induction phase must be put into relation with comparably lower stress caused by hanging upside down and a fast and safe working electrical stunning unit.  相似文献   

20.
1. Hens were subjected to electrical stunning at 85, 105 or 125 mA per bird. The time to recovery of physical behaviour was measured in those birds which did not experience a cardiac arrest at stunning.

2. On average the duration of apparent insensibility lasted between 53 and 59 s, and at 105 mA per bird it was as short as 22 s in the bird which showed the quickest recovery.

3. Increasing the stunning current had no effect on the duration of insensibility.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号