首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This case report describes the history, clinical findings, treatment and outcome of 2 horses with damage and eventual rupture of the deep digital flexor tendon as a result of a comminuted second phalangeal fracture. The rupture of the deep digital flexor tendon complicated the treatment and in one horse contributed to its eventual euthanasia. The athletic outcome was limited in the second case and the lack of palmar soft tissue support likely had a significant effect on the stability and biomechanics of the repair.  相似文献   

2.
OBJECTIVE: To compare the monotonic tensile and fatigue strength of 16-gauge stainless steel wire (SSW) to ultra-high-molecular weight polyethylene (UHMWPE) cable using a transfixed cerclage technique in an in vitro midbody sesamoid osteotomy model. Endoscopic modifications to Martins transfixed cerclage technique were developed. A new suture technique of fixation was compared with the transfixed cerclage technique by measuring gap formation after cyclic testing. STUDY DESIGN: An in vitro biomechanical paired equine cadaver limb study. SAMPLE POPULATION: Twenty-one paired cadaveric adult equine forelimbs. METHODS: Uniaxial medial midbody sesamoid osteotomies were created in paired adult equine forelimbs. Monotonic tensile strength was measured on 10 forelimbs repaired by a transfixed cerclage technique using wire or cable. Fatigue testing to failure was performed on 4 forelimbs repaired using the transfixed cerclage technique by cycling the limbs between 500 N and 2,000 N. The limbs were initially repaired with wire, cycled until the wire broke, then repaired with cable and cycled again to failure. Fatigue testing for gap displacement was performed on 8 limbs repaired with either the transfixed cerclage technique or the suture technique. Limbs were cycled between 500 N and 2,000 N for 10,000 cycles. The limbs were repaired with wire initially, tested, and then repaired with cable and tested again. Twenty-two limbs were used for mechanical testing. The remaining limbs (20) were used to develop and practice the endoscopic transfixed cerclage (10 limbs) and suture (10 limbs) techniques. RESULTS: Ultimate tensile strength (UTS) of UHMWPE cable constructs was 34% greater than the UTS of SSW constructs. Fatigue strength was 2 to 20 times greater for UHMWPE cable constructs than SSW constructs. Separation of fragments was 153% less for limbs repaired by the suture technique compared with those repaired by the transfixed cerclage technique. CONCLUSIONS: UHMWPE cable shows promise for this clinical application because of its greater tensile and fatigue strength. The newly described suture technique significantly reduced gap formation compared with the transfixed cerclage technique. Osteotomy gap formation occurred early in cycling, suggesting that rigid support in the form of a cast may be needed during the early postoperative period for wiring techniques. CLINICAL RELEVANCE: Clinical testing of UHMWPE cable should eliminate problems of wire breakage seen with SSW. The endoscopic transfixed cerclage technique can be used by surgeons familiar with arthroscopic surgery. However, the suture technique needs to be tested in vivo to determine whether there is a clinical advantage compared with the transfixed cerclage technique.  相似文献   

3.
4.
OBJECTIVE--To compare the mechanical properties of 2 interlocking-nail systems for fixation of ostectomized equine third metacarpi (MC3): (1) a standard interlocking nail with 2 parallel screws proximal and distal to a 1-cm ostectomy; and (2) a modified interlocking nail with 2 screws proximal and distal to a 1-cm ostectomy with the screws offset by 30 degrees. ANIMAL OR SAMPLE POPULATION--Twelve pairs of adult equine forelimbs intact from the midradius distally. METHODS--Twelve pairs of equine MC3 were divided into 2 test groups (6 pairs each): torsion and caudocranial 4-point bending. Standard interlocking nails (6-hole, 13-mm diameter, 230-mm length) were placed in 1 randomly selected bone from each pair. Modified interlocking nails (6-hole, 13-mm, 230-mm length, screw holes offset by 30 degrees) were placed in the contralateral bone from each pair. All bones had 1-cm mid-diaphyseal ostectomies. Six construct pairs were tested in caudocranial 4-point bending to determine stiffness and failure properties. The remaining 6 construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t test within each group. Significance was set at P <.05. RESULTS--Mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite, respectively, in 4-point bending were: composite rigidity, 3,119 +/- 334.5 Nm/rad (newton. meter/radian) and 3,185 +/- 401.2 Nm/rad; yield bending moment, 205.0 +/- 18.46 Nm and 186.7 +/- 6.17 Nm; and failure bending moment, 366.4 +/- 21.82 Nm and 378.1 +/- 20.41 Nm. There were no significant differences in the biomechanical values for bending between the 2 fixation methods. In torsion, mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite were: composite rigidity, 135.5 +/- 7.128 Nm/rad and 112.5 +/- 7.432 Nm/rad; gap stiffness, 207.6 +/- 10.57 Nm/rad and 181.7 +/- 12.89 Nm/rad; and yield load, 123.3 +/- 2.563 Nm and 107.5 +/- 8.353 Nm, respectively. Composite rigidity and gap stiffness for standard interlocking-nail fixations were significantly higher than the modified interlocking-nail fixation technique in torsion. Yield load had a tendency to be higher for the standard interlocking-nail fixation (P =.15). CONCLUSIONS--No significant differences in biomechanical properties were identified between a standard interlocking nail and one with the screw holes offset by 30 degrees in caudocranial 4-point bending. The standard interlocking nail was superior to the modified interlocking nail in torsional gap stiffness and composite rigidity. The torsional yield load also tended to be higher for the standard interlocking nail. CLINICAL RELEVANCE--The standard interlocking nail with parallel screw holes is superior to a modified interlocking nail with the screw holes offset by 30 degrees in ostectomized equine MC3 bones in vitro when tested in torsion.  相似文献   

5.
The in vitro biomechanical properties of three methods for internal fixation of femoral neck fractures were evaluated. Fifty cadaveric femura from Beagle dogs were used. Ten intact femora served as controls. In 40 femura, an osteotomy of the femoral neck was performed to simulate a transverse fracture. With the remaining 30 femura, three repair methods (two medium Orthofix pins, a 2.7 mm cortical bone screw placed in lag fashion and an anti- rotational Kirschner wire, or three divergent 1.1 mm Kirschner wires) were used to stabilize the osteotomies, and 10 osteotomies were stabilised per repair method. These 30 femura where then subject to monotonic loading to failure. Construct stiffness and load to failure were measured. In the remaining 10 femura, pressure sensitive film was placed at the osteotomy site prior to stabilization with either two Orthofix pins (n = 5) or a screw placed in lag fashion (n = 5) to determine the compressive pressure (MPa), compressive force (KN) and area of compression (cm2). There was no significant difference in the stiffness or load to failure for the three repair methods evaluated. There was no significant difference in the compressive pressure, compressive force or area of compression in osteotomies stabilized with Orthofix pins and 2.7 mm bone screws.  相似文献   

6.
Thirteen feline humeral fractures were stabilised using external skeletal fixation alone or in combination with supplementary devices. Eleven of the 13 fractures healed. Pins placed in the distal humerus should be angled to avoid the supracondylar foramen and radial nerve. An intramedullary pin in combination with external skeletal fixation is indicated for mildly comminuted reconstructable fractures. For severely comminuted humeral fractures, closed application of an external skeletal fixator may be preferable to open reduction and internal fixation to provide healing and is recommended as an alternative to amputation.  相似文献   

7.
Objective— To compare monotonic biomechanical properties and fatigue life of a broad locking compression plate (LCP) fixation with a broad limited contact dynamic compression plate (LC‐DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. Study Design— In vitro biomechanical testing of paired cadaveric equine MC3 with a mid‐diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population— Cadaveric adult equine MC3 bones (n=12 pairs). Methods— MC3 were divided into 3 groups (4 pairs each) for: (1) 4‐point bending single cycle to failure testing; (2) 4‐point bending cyclic fatigue testing; and (3) torsional single cycle to failure testing. The 8‐hole, 4.5 mm LCP was applied to the dorsal surface of 1 randomly selected bone from each pair. One 8‐hole, 4.5 mm LC‐DCP) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard ASIF techniques. All MC3 bones had mid‐diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results— Mean yield load, yield bending moment, composite rigidity, failure load and failure bending moment, under 4‐point bending, single cycle to failure, of the LCP fixation were significantly greater than those of the LC‐DCP fixation. Mean cycles to failure for 4‐point bending was significantly greater for the LCP fixation compared with LC‐DCP fixation. Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad LCP fixation compared with the LC‐DCP fixation. Conclusion— The 4.5 mm LCP was superior to the 4.5 mm LC‐DCP in resisting the static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a biological plate for the repair of equine long bone fractures.  相似文献   

8.
9.
OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.  相似文献   

10.
External skeletal fixators were used successfully to treat severely comminuted fractures in 5 wapiti.  相似文献   

11.
OBJECTIVE: To compare the mechanical shear strengths and stiffnesses obtained from in vitro testing of a simulated complete third carpal bone (C3) frontal plane radial facet slab fracture (osteotomy) stabilized with either a 4/5 Acutrak (AT) compression screw or a 4.5-mm AO cortical bone (AO) screw inserted in lag fashion. Drilling, tapping, and screw insertion torques, forces, and times also were compared between AT and AO implants. STUDY DESIGN: In vitro biomechanical assessment of site preparation, screw insertion, and shear failure test variables of bone screw stabilized simulated C3 slab fracture in paired cadaveric equine carpi. SAMPLE POPULATION: Eight pairs of cadaveric equine C3 without orthopedic abnormalities. METHODS: Standardized simulated C3 slab fractures were repaired with either AO or AT screws (AO/C3 and AT/C3 groups, respectively). Drilling, tapping, and screw insertion torques, forces, and times were measured with a materials testing machine for each screw type. Repaired specimens were tested in axially oriented shear until failure. Paired Students t-tests were used to assess differences between site preparation, screw insertion, and shear testing variables. Significance was set at P <.05. RESULTS: There were no significant differences in bone fragment measurements of the standardized simulated C3 slab fractures created for AO or AT screws. There were no significant differences for mean and maximum drilling torques; however, the tapered AT drill had greater maximum drilling force compared with the 3.2-mm and 4.5-mm AO drill bits. Mean insertion torque and force measured from the self-tapping AT screw were not significantly different compared with the 4.5-mm AO tap. There were no significant differences in maximum screw torque among constructs. Total procedure time was significantly longer for the AT group (5.8 +/- 1.6 minutes) compared with the AO group (2.9 +/- 1.1 minutes; P =.001). AT stabilized specimens had significantly greater mean +/- SD initial shear stiffness (3.64 +/- 1.08 kN/mm) than AO specimens (1.64 +/- 0.73 kN/mm; P =.005). All other shear mechanical testing variables were not statistically different among screw types. CONCLUSION: The 4/5 Acutrak insertion technique was accurate and safe, and the AT screw effectively stabilized simulated equine C3 frontal plane slab fractures. When tested in shear, this screw type was mechanically comparable to the 4.5-mm AO screw; however, AT constructs had greater initial shear stiffness. Initial shear stiffness was likely an indirect measure of interfragmentary compression, and thus may indicate that the AT screw provides a more rigid fixation for frontal plane C3 slab fractures in horses. CLINICAL RELEVANCE: Considering the comparable mechanical behavior, greater initial shear stiffness for AT screw stabilized C3 slab fracture fragments, the ability to accurately insert the screw with the aid of a guide pin, and the potential for less persistent soft tissue irritation with the headless screw design, the 4/5 tapered AT screw is an attractive alternative for repair of C3 slab fractures in horses.  相似文献   

12.
13.
Objectives: To (1) define mechanical properties in flexion, extension, and left lateral bending of cadaveric equine 4th and 5th cervical (C4–C5) articulations, (2) compare biomechanical properties of C4–C5 when stabilized with a kerf cut cylinder (KCC) compared with a ventrally placed 4.5 mm locking compression plate (LCP). Study Design: In vitro biomechanical investigation. Sample Population: Cadaveric adult equine cervical vertebral columns (n=54). Methods: Cervical vertebrae aged by horse dentition and size measured from radiographs were divided into 3 age groups then randomly allocated to 3 groups. The C4–C5 articulation was treated differently in each of the groups: KCC group; KCC‐implanted LCP group; 8‐hole 4.5 mm LCP implanted and intact group; no implant. Specimens were randomly subdivided into 1 of 3 loading conditions, before testing to failure under 4‐point bending. Stiffness, yield bending moment, failure bending moment, and failure mode were recorded. General linear models were performed to analyze associations between biomechanical properties and test variables. Results: All specimens failed at the C4–C5 intervertebral articulation. The cervical vertebrae with the LCP construct had significantly higher stiffness, yield bending moment, and failure bending moment than the KCC‐implanted cervical vertebrae. Failure modes differed between groups and varied with loading direction: KCC group, fractures of C5 associated with the KCC were common; LCP group, screw pull out or fractures (of C4 and C5 bodies, during extension and the caudal aspect of C4 during left lateral bending) were common; and intact group, subluxations were most common. Conclusions: In this model, LCP constructs had superior biomechanical properties compared with KCC constructs. Further research investigating the effect of repetitive loading is indicated.  相似文献   

14.
OBJECTIVE: To compare the biomechanical properties of intact immature horse femurs and 3 stabilization methods in ostectomized femurs. Animal or SAMPLE POPULATION: Eighteen pairs of femurs from immature horses aged 1 to 15 months, and weighing 68 to 236 kg. METHODS: Thirty-four immature horse femurs were randomly assigned to 1 of 5 test groups: 1) interlocking intramedullary nail (IIN) (n = 6); 2) IIN with a cranial dynamic compression plate (I/DCP) (n = 6); 3) 2 dynamic compression plates (2DCP) (n = 8); 4) intact femurs tested to failure in lateromedial (LM) bending (n = 6); and 5) intact femurs tested to failure in caudocranial (CaCr) bending (n = 8). Mid-diaphyseal ostectomies (1 cm) were performed in all fixation constructs. Biomechanical testing consisted of 4 nondestructive tests: CaCr bending, LM bending, compression, and torsion, followed by bending to failure. All groups were tested to failure in LM bending with the exception of 1 group of intact femurs tested to failure in CaCr bending. Stiffness and failure properties were compared among groups. RESULTS: The 2DCP-femur construct had greater structural stiffness in nondestructive bending than the IIN-femur construct in either LM or CaCr bending, and the I/DCP-femur construct in LM bending. Only the I/DCP and 2DCP fixations were similar to intact bone in nondestructive-bending tests. In addition, the 2DCP-femur construct had greater structural and gap torsional stiffness than the I/DCP-femur construct, and greater gap torsional stiffness than the IIN-femur construct. However, all of the fixation methods tested, including the 2DCP-femur construct, had lower structural stiffness in torsional loading compared with intact bone. No significant differences in structural stiffness were found between intact bones and femur constructs tested nondestructively in compression. In resistance to LM bending to failure, the 2DCP-femur construct was superior to the IIN-femur construct, yet similar to the I/DCP-femur construct. Also, evaluation of yield and failure loads revealed no significant differences between intact bone and any of the femur constructs tested to failure in LM bending. CONCLUSIONS: In general, the 2DCP-femur construct provided superior strength and stiffness compared with the IIN and I/DCP-femur constructs under bending and torsion. CLINICAL RELEVANCE: Double plating of diaphyseal comminuted femoral fractures in immature horses may be the best method of repair, because in general, it provides the greatest strength and stiffness in bending and torsion.  相似文献   

15.
OBJECTIVES: To compare the monotonic biomechanical properties and fatigue life of a broad, limited contact, dynamic compression plate (LC-DCP) fixation with a broad, dynamic compression plate (DCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An LC-DCP (8-hole, 4.5 mm) was applied to the dorsal surface of 1 randomly selected bone from each pair. One DCP (8-hole, 4.5 mm broad) was applied dorsally to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: The mean 4-point bending yield load, yield bending moment, composite rigidity, failure load, and failure bending moment of LC-DCP fixation were significantly greater (P<.01) than those of broad DCP fixation. Mean cycles to failure for 4-point bending was significantly (P<.001) greater for broad DCP fixation compared with broad LC-DCP fixation. Mean yield load, mean composite rigidity, and mean failure load in torsion was significantly (P<.02) greater for broad LC-DCP fixation compared with broad DCP fixation. CONCLUSION: Broad LC-DCP offers increased stability in static overload testing, however, it offers significantly less stability in cyclic fatigue testing. CLINICAL RELEVANCE: The clinical relevance of the cyclic fatigue data supports the conclusion that the broad DCP fixation is biomechanically superior to the broad LC-DCP fixation in osteotomized equine MC3 bones despite the results of the static overload testing.  相似文献   

16.
CLINICAL SUMMARY: The surgical repair of comminuted ilial wing fractures (comprising a long oblique fracture with ventral multiple fragmentation) in three cats using composite internal fixation is reported. The technique comprised the use of pins, screws, wire and polymethylmethacrylate. All cases had an excellent outcome with uneventful bone healing. One case had a very mild reduction in pelvic canal diameter postoperatively. There was no evidence of implant loosening or migration in any cat on follow-up radiographs. PRACTICAL RELEVANCE: This technique provided a quick and highly adaptable means of stabilising this fracture configuration, as well as restoring pelvic symmetry, when limited buttressing support and bone stock were available cranial and ventral to the acetabulum. This method of fixation may have biomechanical advantages over lateral or dorsal plating techniques for this particular type of fracture configuration.  相似文献   

17.
Ten horses presented with severe distortion of the facial contour, crepitus on palpation and mild to moderate epistaxis. Individual horses also showed ocular damage, ptosis, severe dyspnoea and movement of the facial bones concurrent with respiration. The fracture fragments were exposed using a large curvilinear incision and elevated using a retractor, periosteal elevator, chisel or Steinmann pin. The fracture fragments were unstable following reduction and fixation was necessary. Stabilisation was achieved with polydioxanone sutures placed through holes drilled in opposing sides of the fracture lines. Polydioxanone sutures provided good stability and had better handling properties than wire. There was good apposition of fracture edges and minimal complications. Use of polydioxanone sutures can also avoid the expense and complexity of plate fixation in selected cases, and should be considered as an alternative to fixation with stainless steel wire in any facial fracture that adjoins stable bone.  相似文献   

18.
This in vitro study compares the biomechanical properties of two methods of ilial fracture repair in dogs. Ten pelves were harvested from skeletally mature mixed breed dogs weighing 20-27 kg and bilateral oblique ilial body osteotomies were created. One hemipelvis from each dog was stabilized with a 2.7 mm plate and screws and the contralateral hemipelvis was stabilized with a five pin linear external fixator construct. Each hemipelvis was mounted at an angle of 30 degrees to an actuator platform, such that the acetabulum was centrally loaded by a steel sphere attached to the load cell of a servohydraulic materials testing machine. The construct was loaded at a constant rate of 20 mm/min. A load/displacement curve was generated for each hemipelvis by plotting the sustained load against the actuator movement. The stiffness, yield load and failure load for each hemipelvis were determined from the load/displacement curve. Bending stiffness was defined as the slope of the load/displacement curve from 100 N to yield load. The mode of failure was determined by observations made during testing and gross inspection of each specimen. The mean construct stiffness, yield load and failure load were compared between stabilization groups using a Student's paired t-test with statistical significance set at p<0.05. Nine out of 10 of the hemipelves that were stabilized by plates and screws failed catastrophically by fracture through the caudal screw holes and nine out of 10 of the hemipelves that were stabilized using an external fixator failed by fracture of the ischium in the region supported by the mounting roller, propagating through the most caudal ischial pin. There was not any significant difference (P=0.22) in bending stiffness between stabilization techniques, but yield (1467 N vs 2620 N; P=0.04) and failure (1918 N vs 2687 N; P=0.002) loads were significantly greater for hemipelves stabilized with external fixators.  相似文献   

19.
OBJECTIVE: To compare acute fixation stability and insertion effort of cortex bone screws with and without a shaft inserted in lag fashion in equine metacarpal (metatarsal, MC(T)III) bone. METHODS: Screw types with independent variables of screw diameter (4.5 or 5.5 mm) and shaft type (without shaft, with 20-mm shaft, or with 25-mm shaft) were studied. Bone specimens cut from distal equine MC(T)III condyles were used. After screw insertion in lag fashion into 2 bone blocks with an instrumented device, shear tests were conducted in a mechanical testing machine. Outcome variables of peak insertion torque, insertion energy, stiffness. yield strength, and displacement at 3 kN of load were compared. RESULTS: The effects of screw design were substantial. Screws with shaft were 30% to 40% stiffer and 60% to 70% stronger than screws without shaft. Screws with shaft could tolerate 80 to 95 kg more force than screws without shaft before yielding. At 3 kN load, the displacement with screws with shaft was 55% to 60% of that with screws without shaft. Screws with a long shaft tended to perform better than those with a short shaft. There was no difference in the shear stiffness, shear yield strength, or shear displacement between the 2 screw diameters. Although larger diameter screws required more insertion effort, and screws with a short shaft required the most insertion energy, these differences were small. CONCLUSIONS: Cortex screws with a long shaft of 4.5- or 5.5-mm diameter provide better stability in equine MC(T)III condyle bone with less insertion effort compared with those with a short shaft or no shaft. CLINICAL SIGNIFICANCE: Cortex bone screws with a shaft inserted in lag fashion should be considered for the fixation of equine MC(T)III condylar fractures.  相似文献   

20.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号