首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Field studies were conducted over two seasons to examine the effect of Leucaena leucocephala as a green manure on the N uptake and yield of rice grown under lowland conditions. The treatments were 0, 4, 8, and 12t Leucaena ha-1 with 0,44, and 88 kg N ha-1 as urea in a factorial combination. N uptake was evaluated at maximum tillering, panicle initiation, and harvest. The incorporation of Leucaena increased N uptake throughout the vegetative period in both seasons, irrespective of the mineral-N level. At all levels of N, the grain yield increased significantly following the incorporation of Leucaena, and in both seasons the Leucaena treatment of 8 t ha-1 was almost as effective as the highest mineral-N application.  相似文献   

2.
Summary The evolution of mineral and hydrosoluble organic N released from two soils differing in pH and treated with leaves of Leucaena leucocephala (0, 8.3, 16.7, and 33. g kg-1 soil), Dactyladenia barteri (syn. Acioa barteri; 0 and 16.7 g), and their mixtures was studied in the laboratory using the aerobic incubation-leaching method. N mineralization in untreated soils and in soils supplemented with 8.3 g leucaena leaves was 41–53% higher in the soil from Onne (pH 4.7) than in the soil from Ibadan (pH 6.2), but the organic N content was similar with these treatments in the leachates of the soils from both locations. The application of 16.7 or 33.3 g of either or both type of leaves reduced the rate of mineral N production during the first 4 weeks, particularly in soils treated with dactyladenia leaves (C:N=36). After this lag period, N mineralization proceeded at a faster rate in the soil from Ibadan treated with 16.7 or 33.3 g of leucaena leaves (C:N=12), even in the presence of dactyladenia leaves. In Ibadan soil, after 12 weeks, mineral N apprently derived from leaves of both dactyladenia and leucaena averaged 6.3% of the N applied, and organic N from leaves averaged 9.5%. The addition of dactyladenia and leucaena leaves did not increases the mineral N content in the acid soil from Onne but leaching of soluble organic N with addition of 16.7 or 33.3 g of leaves contributed an N-mineralizable pool of 5.9% of the N applied.  相似文献   

3.
The influence of four pruning frequencies on biomass, nodulation and N2 fixation was investigated on Albizia lebbeck, Gliricidia sepium and Leucaena leucocephala grown in the screenhouse for 16 months, using acetylene reduction and 15N dilution methods. Frequent prunings at 4-month intervals had no deleterious effect on symbiotic N2 fixation, which increased in Gliricidia and Leucaena in particular. Nodulation and nitrogenase activity varied inconsistently within species, and were not influenced by pruning frequency. Cumulative assessment of pruning effect showed higher biomass, N yield and N2-fixing capacity of the woody species than at last harvest, and appeared to have more practical relevance. Across species, cumulative total dry matter, N yields, and both percentage and absolute amount of N2 derived from atmosphere increased with pruning frequency, except when trees were pruned 3 times. Of the three species, G. sepium had the lowest biomass production, N2 fixation and N accumulation. Received: 25 October 1995  相似文献   

4.
TheA-value method, involving the application of a higher15N rate to a reference non-N2-fixing plant, was used to assess the magnitude of N2 fixation in two bambara groundnut cultivars at four growth stages [vegetative, 0–47 days after planting (DAP); early pod-filling, 47–99 DAP; mid-pod-filling, 99–120 DAP; physiological maturity, 120–148 DAP). The cultivars were Ex-Ada, a bunchy type, and CS-88-11, a slightly spreading type. They were grown on a loamy sand. Uninoculated Ex-Ada and CS-88-11 were used as reference plants to measure the N2 fixed in the inoculated bambara groundnuts. In this greenhouse study, soil was the major source of N in bambara groundnuts during vegetative growth, and during this period it accounted for over 80% of the N accumulaed in the plants. However, N2 fixation became the major source of plant N during reproductive growth. There were significant differences between the two cultivars in the ability to fix N2, and at physiological maturity, almost 75% of the N in CS-88-11 was derived from the atmosphere compared to 55% in Ex-Ada. Also, the total N fixed in CS-88-11 at physiological maturity was almost double that in Ex-Ada. Our data indicate that the higher N2 fixation in CS-88-11 was due to two factors, a higher intensity of N2 fixation and a longer active period of N2 fixation. The results also suggest that bambara groundnut genotypes could be selected for higher N2 fixation in farining systems.  相似文献   

5.
A pot experiment was conducted to determine the effect of four rates of nitrogen (N) in the form of leucaena leaves and the time of application on the performance of sorghum plants using the 15N isotopic dilution technique. Results showed that leucaena green manure (LGM) increased dry matter and N yield of sorghum. Nitrogen recoveries of LGM ranged between 23 and 47%. An additional beneficial effect of LGM was attributed to the enhancement of soil N uptake. The best timing of LGM incorporation for obtaining more N derived from LGM, less soil N uptake, and greater dry matter and N in sorghum leaves seemed to be at planting. However, the appropriate timing and rate of LGM to obtain greater dry matter and N yield in panicles, as well as in the whole plant of sorghum, appeared to be at 30 days before planting, particularly a rate of 120 kg N ha?1.  相似文献   

6.
A field experiment was conducted to obtain the N balance sheet for sole crops and intercrops of sorghum [Sorghum bicolor (L.) Moench] and pigeonpeas [Cajanus cajan (L.) Millsp.]. Intercropping gave a significant advantage over sole cropping in terms of dry matter production and grain yield, as calculated on the basis of the land equivalent ratio and area-time equivalent ratio. The N fertilizer use efficiency and atmospheric N2 fixation by pigeonpea were estimated using 15N-labeling and natural abundance methods. The N fertilizer use efficiency of sorghum was unaltered by the cropping system, while that of the pigeonpea was greatly reduced by intercropping. Although intercropping increased the fractional contribution of fixed N to the pigeonpeas, no significant difference was observed between the cropping systems in total symbiotically fixed N. There was no evidence of a significant transfer of N from the pigeonpea to the sorghum. This study showed that use of soil N and fertilizer N by pigeonpeas was almost the same as that by sorghum in sole cropping, indicating the potential competence of pigeonpeas to exploit soil N. However, when N was exhausted by a companion crop in intercropping, the pigeonpea crop increased its dependency on atmospheric N2 fixation. We conclude that knowledge of how N from different sources is shared by companion crops is a prerequisite to establishing strategies to increase N use, and consequently land productivity, in intercropping systems.  相似文献   

7.
Over half of the 21 Mha of soybean planted in Brazil is now transgenic glyphosate-resistant (GMRR). A field experiment was carried out to investigate whether the application of glyphosate or imazethapyr to the GMRR variety reduced the input of N2 fixation (BNF). No effects on yield, total N accumulation, nodulation and BNF (δ15N) could be assigned to the genetic modification of the plant. Imazethapyr reduced soybean yield but had no significant effect on BNF. Even though yields were not affected by glyphosate, the significant reduction of nodule mass and BNF to the GMRR suggests that the use of this herbicide could lead to an increased dependence on soil N and consequently an eventual decrease of SOM reserves.  相似文献   

8.
Summary We studied the effect of three successive cuttings on N uptake and fixation and N distribution in Leucaena leucocephala. Two isolines, uninoculated or inoculated with three different Rhizobium strains, were grown for 36 weeks and cut every 12 weeks. The soil was labelled with 50 ppm KNO3 enriched with 10 atom % 15N excess soon after the first cutting. Except for the atom % 15N excess in branches of K28 at the second cutting, both the L. leucocephala isolines showed similar patterns of total N, fixed N2, and N from fertilizer distribution in different parts of the plant at each cutting. The Rhizobium strain did not influence the partitioning of 15N among the different plant parts. Significant differences in 15N enrichment occurred in different parts. Live nodules of both isolines showed the lowest atom % 15N excess values (0.087), followed by leaves (0.492), branches (0.552), stems (0.591), and roots (0.857). The roots contained about 60% of the total plant N and about 70% of the total N derived from fertilizer over the successive cuttings. The total N2 fixed in the roots was about 60% of that fixed in the whole plant, while the shoots contained only 20% of the fixed N2. We conclude that N reserves in roots and nodules constitute another N source that must be taken into account when estimating fixed N2 or the N balance after pruning or cutting plants. 15N enrichment declined up to about fivefold in the reference and the N2-fixing plants over 24 weeks following the 15N application. The proportion and the amounts of N derived from fertilizer decreased, while the amount derived from N2 fixation increased with time although its proportion remained constant.  相似文献   

9.
A greenhouse experiment was conducted to investigate the effect of a P application (0 vs. 50 mg P kg-1) on yield, nodulation, and N2 fixation by three cowpea cultivars (Soronko, Amantin, and IT81D-1137) using the 15N isotope-dilution method. When P was not applied the inoculated cowpea genotypes showed significant differences (Soronko>Amantin> IT81D-1137) in N accumulation, in contrast to the uninoculated cowpea cultivars, which accumulated similar amounts of N. The differences in shoot N in inoculated plants were thus caused by differences in N2 fixation. The average values of N fixed (for both P levels) were 74% in Soronko, 59% in Amantin, and 42% in IT81D-1137, corresponding to 80, 51, and 24 mg N plant-1, respectively. Inoculation increased the total shoot-N accumulation in cv. Soronko by 270% without P and by 204% with P, cv. Amantin by 152 and 104%, and cv. IT81D-1137 by 74 and 58%, respectively. With P, the % N derived from atmosphere (%Ndfa) was 42% for IT81D-1137, 62% for Amantin, and 76% for Soronko. The high value for Soronko indicates that in a soil of medium fertility, certain cowpea cultivars are capable of satisfying their total N requirement through N2 fixation. The P effect on N2 fixation was mainly in the total amount of N fixed rather than on the percentage derived from the atmosphere.  相似文献   

10.
There is conflicting evidence about toxic effects of heavy metals in soil on symbiotic nitrogen fixation. This study was set-up to assess the general occurrence of such effects. Soils with metal concentration gradients were sampled from six established field trials, where sewage sludge or metal salts have been applied, or from a transect in a sludge treated soil. Additional contaminated soils were sampled near metal smelters, in floodplains, in sludge amended arable land and in a metalliferous area. Symbiotic nitrogen fixation was measured with 15N isotope dilution in white clover (Trifolium repens L.) grown in potted soil that was not re-inoculated, and using ryegrass (Lolium perenne L.) as reference crop. The fraction nitrogen in clover derived from fixation (Ndff) varied from 0 to 88% depending on soil. Pronounced metal toxicity on Ndff was only confirmed in a sludge treated soil where nitrogen fixation was halved from the control value at soil total metal concentration of 737 mg Zn kg−1, 428 mg Cu kg−1 and 10 mg Cd kg−1. The Ndff was significantly reduced by increasing metal concentration in soils from two other sites where Ndff was low throughout and where these effects might be attributed to confounding factors. No significant effects of metals on Ndff were identified in all other gradients even up to elevated total metal concentration (e.g. 55 mg Cd kg−1). The variation of Ndff among all soils (n=48), is mainly explained by the number of rhizobia in the soil (log MPN, log (cells g−1 soil)), whereas correlations with total or soil solution metal concentrations were weak (R2<0.25). The is significantly affected by the presence or absence of the host plant at the sampling site. No effects of metals were identified at even at total Zn concentrations of about 2000 mg Zn kg−1, whereas metal toxicity could be identified at lower most probable number (MPN) values. This survey shows that the metal toxicity on symbiotic nitrogen fixation cannot be generalized and that survival of a healthy population of the microsymbiont is probably the critical factor.  相似文献   

11.
Three-week-old nodulated faba bean plants were subjected to different levels of drought stress (onehalf, one-quarter, or one-eighth field capacity) for 5 weeks. Half the stressed plants were treated with KCl at 10 mg kg-1 soil or 150 mg kg-1 soil at the beginning of the drought stress. Nodulation and nitrogenase activity were significantly decreased by increasing drought stress. Leghaemoglobin and protein contents of nodule cytosol were also severely inhibited by drought sttess. This decline was attributed to the induction of protease activity. However, carbohydrate contents of the nodule cytosol increased significantly. This accumulation was attributed to a sharp decline in invertase activity and low use of sugar by the bacteroids We conclude that harmful effects of water deficits can be alleviated by increasing K+ supplementation.  相似文献   

12.
The beneficial role of green manures in rice production is generally ascribed to their potential of supplying plant nutrients, particularly nitrogen (N). However, the mechanisms through which green manures enhance the crop productivity are poorly understood. Pot experiments were conducted using a 15N-tracer technique: (1) to compare the biomass production potential of sesbania (Sesbania aculeata Pers.) and maize (Zea mays L.) as green manuring crops for lowland rice and (2) to compare the effect of the two types of green manure and inorganic N on the dry matter accumulation and N uptake by two rice (Oryza sativa L.) cultivars, viz. IR-6 and Bas-370. Although maize produced three times higher shoot biomass compared with sesbania, the latter showed higher N concentration; and thus the total N yield was similar in the two types of plants. Applying the shoot material of the two plants to flooded rice significantly enhanced the dry matter yield and N uptake by the two rice cultivars, the positive effects generally being more pronounced with sesbania than with maize amendment. The difference in the growth-promoting potential of the two plant residues was related more to an increased uptake of the native soil N rather than to their direct role as a source of plant-available N. A positive added nitrogen interaction (ANI) was observed due to both plant residues, the effect was much more pronounced with the application of sesbania than with maize residues. In both rice cultivars, inorganic N also caused a substantial ANI, particularly at higher application rate. Losses from the applied N were 2–3 times lower from sesbania, compared with maize treatment. Green manuring with sesbania also caused much lower N losses than the inorganic N applied at equivalent or higher rates. The overall benefit of green manuring to rice plants was higher than inorganic N applied at comparable rates. The two rice cultivars differed in their response to green manuring, IR-6 generally being more responsive than Bas-370.  相似文献   

13.
Summary Dissimilarities in soil N uptake between N2-fixing and reference non-N2-fixing plants can lead to inaccurate N2 fixation estimates by N difference and 15N enrichment methods. The natural 15N abundance ( 15N) method relies on a stabilized soil 15N pool and may provide reliable estimates of N2 fixation. Estimates based on the 15N and differences in N yield of nodulating and non-nodulating isolines of soybean were compared in this study. Five soybeans from maturity groups 00, IV, VI, and VIII and their respective non-nodulating isolines were grown at three elevations differing in ambient temperature and soil N availability. Despite large differences in phenological development and N yield between the non-nodulating isolines, the 15N values measured on seeds were relatively constant within a site. The 15N method consistently produced lower N2 fixation estimates than the N difference method, but only in three of the 15 observations did they differ significantly. The average crop N derived from N2 fixation across sites and maturity groups was 81% by N difference compared to 71% by 15N. The magnitude of difference between the two methods increased with increasing proportions of N derived from N2 fixation. These differences between the two methods were not related to differences in total N across sites or genotypes. The low N2 fixation estimates based on 15N might indicate that the nodulating isolines had assimilated more soil N than the non-nodulating ones. A lower variance indicated that the estimates by N difference using non-nodulating isolines were more precise than those by 15N. Since the differences between the estimates were large only at high N2 fixation levels (low soil N availability), either method may be used in most situations when a non-nodulating isoline is used as the reference plant. The 15N method may have a comparative advantage over N difference and 15N enrichment methods in the absence of a suitable non-N2-fixing reference plant such as a non-nodulating isoline.  相似文献   

14.
Abstract

Nitrogen fixation was simulated for a leafless variety (Delta) of pea (Pisum sativum L.) in central Sweden. It is assumed that N2 fixation is basically proportional to root biomass, but limited by high root N or low substrate carbon concentrations. Input data on root carbon and nitrogen were estimated from observations of above-ground biomass and nitrogen. The simulated N2 fixation was compared with estimated values from observations using the 15N labelling technique. Test data were taken from pea monocultures and pea-oat mixtures with varying pea biomass levels during 1999. Simulated within-season accumulated N2 fixation correlated to the estimated N2 fixation with a correlation coefficient (R 2) of 0.74. For seasonal simulations, the predictability was higher (R 2=0.93). Two alternative non-dynamic models, estimating seasonal N2 fixation as proportional to above-ground biomass and above-ground N, respectively, gave lower predictability (R 2=0.83 and 0.80, respectively). The models were also applied to a second year (1998) and two other sites by comparison with accumulated N2 fixation estimated by the Difference method. A halved specific N2 fixation rate (expressed per unit of root biomass) in 1999, compared with 1998, corresponded to essentially dryer and warmer soil conditions during 1999. It was indicated that the variations in soil moisture were more important than soil temperature. It was concluded that the abiotic responses might be of great importance for modelling N2 fixation rate under different soil conditions.  相似文献   

15.
This study examines the potential, magnitude, and causes of enhanced biological N2 fixation (BNF) by common beans (Phaseolus vulgaris L.) through bio-char additions (charcoal, biomass-derived black carbon). Bio-char was added at 0, 30, 60, and 90 g kg−1 soil, and BNF was determined using the isotope dilution method after adding 15N-enriched ammonium sulfate to a Typic Haplustox cropped to a potentially nodulating bean variety (CIAT BAT 477) in comparison to its non-nodulating isoline (BAT 477NN), both inoculated with effective Rhizobium strains. The proportion of fixed N increased from 50% without bio-char additions to 72% with 90 g kg−1 bio-char added. While total N derived from the atmosphere (NdfA) significantly increased by 49 and 78% with 30 and 60 g kg−1 bio-char added to soil, respectively, NdfA decreased to 30% above the control with 90 g kg−1 due to low total biomass production and N uptake. The primary reason for the higher BNF with bio-char additions was the greater B and Mo availability, whereas greater K, Ca, and P availability, as well as higher pH and lower N availability and Al saturation, may have contributed to a lesser extent. Enhanced mycorrhizal infections of roots were not found to contribute to better nutrient uptake and BNF. Bean yield increased by 46% and biomass production by 39% over the control at 90 and 60 g kg−1 bio-char, respectively. However, biomass production and total N uptake decreased when bio-char applications were increased to 90 g kg−1. Soil N uptake by N-fixing beans decreased by 14, 17, and 50% when 30, 60, and 90 g kg−1 bio-char were added to soil, whereas the C/N ratios increased from 16 to 23.7, 28, and 35, respectively. Results demonstrate the potential of bio-char applications to improve N input into agroecosystems while pointing out the needs for long-term field studies to better understand the effects of bio-char on BNF.  相似文献   

16.
The effects of annual application of rice straw or cow manure compost for 17–20 y on the dynamics of fertilizer N and soil organic N in Gley paddy fields were investigated by using the 15N tracer technique during the rice cropping season. The chloroform fumigation-extraction method was evaluated to determine the properties of soil microbial biomass under submerged field conditions at the tillering stage before mid-summer drainage, with special reference to the fate of applied NH4 +-15N.

The transfer ratios from applied NH4 +-15N to immobilized N in soil and to uptake N by rice during given periods varied with the rice growth stages and were affected by organic matter application. The accumulated amounts of netmineralized soil organic N (net-Mj ), immobilized N (Ij ), and denitrified N (Dj ) during the cropping season were estimated to be 14.0–22.5, 6.3–11.2, and 3.4–5.3 g N m-2, respectively. Values of net-Mj and Ij were larger in the following order: cow manure compost plot > rice straw plot > plot without organic matter application, and their larger increase by the application of cow manure compost contributed to a decrease of the Dj values, as compared with rice straw application.

Values of E N extra extractable soil total N after fumigation, increased following organic matter application, ranging from 2.1 to 5.4 g N m-2. Small residual ratios of applied 15N in the fraction E N at the end of the given period indicated that re-mineralization of newly-assimilated 15N through the easily decomposable fraction of microbial biomass had almost ended. Thus, the applicability to paddy field soils of the chloroform fumigation-extraction method was confirmed.  相似文献   

17.
Summary Barley-field pea intercrops have been shown to increase N yield when grown under cryoboreal subhumid conditions. In this study, we extended previous research by testing the hypotheses that (1) the intercropped field pea fixes a greater proportion of its shoot and root N than does sole-cropped field pea; (2) N is transferred from the annual legume to the cereal during the growing season; and (3) root production is greater under intercropped than sole-cropped conditions. Unconfined microplots seeded to barley, field peas, or a barley-field pea intercrop were fertilized with N at 10 kg ha-1 as (NH4)2SO4 (5.21 atom % 15N excess). Both the intercropped and sole-cropped barley derived more than 93% of their N from the soil. In contrast, 40% of N in the intercropped field pea was derived from soil. This study provided no evidence for transfer of N from the legume to the cereal. On average, the proportion of N derived from air by both pea intercrops was 39% higher than that derived by the sole-cropped pea. Root length determined by a grid intersection method following digitization using an image analyzer tended to be higher under intercropping than in sole crops. We conclude that even on fertile soils benefits may accrue from annual intercropping that includes a legume. The benefits arise from (1) increased N production, (2) greater N-fixation efficiency, and/or (3) more shoot and root residue-N mineralization for subsequent crops.  相似文献   

18.
Summary Biological N2 fixation was estimated in a field experiment following the addition of NH4Cl or KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). A model of total N and 15N accumulation in lupins and decreasing 15N enrichment in the KCl-extractable soil-N pool (0–0.15 m depth) was used to estimate the proportion of N in lupins derived from biological N2 fixation. Estimates of N2 fixation derived from the model were compared with 15N isotope-dilution estimates obtained using canola, annual ryegrass, and wheat as nonfixing reference plants. Biomass, total N accumulation, or 15N enrichment in the lupin and reference crops did not differ whether NH inf4 sup+ or NO inf3 sup- was added as the labelled inorganic-N source. The decrease in soil 15N enrichment was described by first-order kinetics, whereas total N and 15N accumulation in the lupins were described by logistical equations. Using these equations, the uptake of soil N by lupins was estimated and was then used to calculate fixed N2. Estimates of N2 fixation derived from the model increased from 0 at 50 days after sowing to a maximum of 0.79 at 190 days after sowing. Those based on the 15N enrichment of the NO inf3 sup- pool were 10% higher than those based on the mineral-N pool. 15N isotope-dilution estimates of N2 fixation ranged from 0.37 to 0.55 at 68 days after sowing and from 0.71 to 0.77 at 190 days after sowing. Reference plant-derived values of N2 fixation were all higher than modelled estimates during the early states of growth, but were similar to modelled estimates at physiological maturity. The use of the model to estimate N2 derived from the atmosphere has the intrinsic advantage that the need for a non-fixing reference plant is avoided.  相似文献   

19.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

20.
Appropriate 15N-labeling methods are crucial for estimating N2-fixation in trees used in agroforestry systems. A 4-year field experiment was conducted on an Alfisol in Southwestern Nigeria to compare the estimates of N2 fixed in Leucaena leucocephala, using two non-N2-fixing leguminous trees, Senna siamea and S. spectabilis, as reference plants and three different methods of introducing 15N into soil. The atom % 15N uptake pattern (as reflected in the leaves) was identical in both N2- and non-N2-fixing tree species irrespective of the 15N-application method. There was a significant decline in atom % 15N excess in the leaves of L. leucocephala (from 0.266 to 0.039), S. siamea (0.625 to 0.121), and S. spectabilis (from 0.683 to 0.118) from the first sampling 12 months after planting and the second sampling 18 months after sampling. From the second harvest in 1991 until the end of the experiment (fifth) harvest in 1993, however, the atom 15N % excess decline in leaves of the three species was less pronounced and depended on the method of 15N application. In those plants to which the tracer was applied once at planting, the 15N decline was steady between the second and the last prunings. In the split-application treatment, the atom 15N % excess increased slightly at the third pruning and decreased during the subsequent two prunings. The reference tree and the method of 15N application influenced the estimated proportion of N derived from atmospheric N2 by L. leucocephala, calculated as 73 and 64%, corresponding to 119 and 98 kg N ha-1 of N2 fixed per 6 months, when S. spectabilis and S. siamea were used as reference trees, respectively. The approach by which 15N-labeled fertilizer was applied to the soil in three splits gave slightly higher estimates of N derived from the atmosphere but this was of little agronomic significance because total N2 fixed was similar for all methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号