共查询到16条相似文献,搜索用时 62 毫秒
1.
为提高土壤墒情预测精度,提出了一种基于遗传算法(GA)、改进粒子群算法(IPSO)、误差反向传播(BP)神经网络和支持向量机(SVM)的土壤墒情组合预测模型(GA_IPSO_BP-SVM)。该模型首先在BP神经网络的权阈值选择中同时引入GA和IPSO构成GA_IPSO_BP模型,然后对GA_IPSO_BP和SVM模型分别进行训练和数据仿真,最后利用建立的加权模型对GA_IPSO_BP和SVM模型的土壤墒情预测结果进行组合。以安庆市8个监测站某时段内农田土壤墒情数据为例,分别按隔日、两日后和三日后三种时间跨度进行土壤墒情预测,并对照BP、GA-BP、PSO-BP、IPSO-BP、GA_IPSO_BP和SVM模型,验证和比较提出的GA_IPSO_BP-SVM模型的土壤墒情预测精度。结果表明,GA_IPSO_BP-SVM模型的土壤含水量预测相对误差平均值最小。GA_IPSO_BP与SVM模型组合的GA_IPSO_BP-SVM模型提高了土壤墒情的预测精度,更适合于土壤墒情的短期预测,该方法可为农业节水灌溉方案的制定提供技术支撑。 相似文献
2.
介绍了支持向量机、信息向量机和相关向量机的理论与算法。利用最优化对偶理论,阐述了支持向量机的三种主要算法:硬间隔支持向量机、软间隔线性支持向量机和二次软间隔支持向量机的理论推导过程。对基于高斯过程模型,详细说明了信息向量机和相关向量机算法的实现过程。 相似文献
3.
基于支持向量机的干旱预测研究 总被引:1,自引:0,他引:1
支持向量机(SVM)是基于统计学习理论的一种智能学习方法,可以用来解决样本空间的高度非线性的模式识别等问题。干旱是气候因子非线性复杂关系相互作用造成水分严重亏缺的一种气候异常反映,本文选择SVM方法,利用8月南方涛动指数、副高强度指数、极涡强度指数等15项因子,基于径向基核函数建立浙江省秋季的干旱预测模型,应用交叉验证方式确定最优模型参数,并进行了预测,对模型的检验结果表明,建立的干旱预测模型能直接对秋季干旱进行预测,并且有较高的准确率,可为气候预测从气候要素预测到气象灾害预测提供一种有效途径。 相似文献
4.
基于支持向量机的土壤湿度模拟及预测研究 总被引:5,自引:0,他引:5
基于中山大学珠海校区气象观测站日平均风速、日平均气温、日平均空气湿度、日平均水汽压、日平均总辐射量、日平均地表温度、日平均降雨量、日平均蒸发量以及日平均10 cm、20 cm、30 cm土层土壤的含水量,利用支持向量机方法建立气象因子与土壤湿度统计关系,并以此为基础建立土壤湿度模拟与预测模型.结果表明,土壤湿度对气象因子有一定滞后相关性,不同土层土壤湿度对气象因子的滞后相关性不同.研究发现考虑滞后相关性的预测模型在精度上要高于不考虑滞后相关性的预测模型.此外,利用气象因子对地下10 cm的土壤湿度模拟与预测精度较高,而对地下20 cm、30 cm的土壤湿度模拟精度较低.利用地下10 cm与20 cm、20 cm与30 cm的土壤湿度相关性大的特点,可以考虑利用支持向量机方法以10 cm土壤湿度模拟与预测20 cm的土壤湿度,以20 cm的土壤湿度模拟与预测30 cm的土壤湿度,分析结果表明模拟精度较高. 相似文献
5.
基于太赫兹光谱和支持向量机快速鉴别咖啡豆产地 总被引:1,自引:5,他引:1
结合太赫兹时域光谱技术和支持向量机对3种典型产地的咖啡豆进行了鉴别。选取埃塞俄比亚(Ethiopia)、哥斯达黎加(Costa Rica)以及印度尼西亚(Indonesia)3个产地咖啡豆样品进行压片处理,采用太赫兹透射模式获取样品的时域和频域光谱信号,并用主成分分析法对太赫兹频域光谱信号进行分析;构造了基于粒子群(partical swarm optimization,PSO)参数寻优的支持向量机(support vector machine,SVM)鉴别模型,模型对不同产地咖啡豆样品的综合识别正确率达到95%。试验结果表明,太赫兹作为新型的检测手段结合模式识别方法可用于咖啡豆的产地鉴别。该文为一类在太赫兹波段下没有明显特征吸收峰的农产品/食品安全检测和产地追溯研究提供了一种快速、准确的方法。 相似文献
6.
基于支持向量机的土壤水力学参数预测 总被引:5,自引:6,他引:5
为了分析支持向量机在土壤水力学参数预测方面的效果,应用支持向量机构建用于预测土壤水力学参数的土壤传递函数,以土壤粒径分布、容重、有机质含量等土壤理化性质为输入项,分别预测土壤饱和导水率、饱和含水率、残余含水率,以及van Genuchten公式参数的对数形式。结果表明预测值和实测值不存在显著性差异,用支持向量机预测土壤水力学参数是可行的。不同输入项处理的预测分析表明,输入项为粒径分布、粒径分布和容重、粒径分布和有机质含量3种情况的预测效果差异不明显,而输入项为粒径分布、容重和有机质含量时预测效果优于前3种情况。支持向量机在预测土壤水力学参数方面的效果要优于多元线性逐步回归模型,而与BP神经网络模型相比不具有明显好的预测效果。 相似文献
7.
基于最小二乘支持向量机的中国粮食产量预测模型研究 总被引:1,自引:0,他引:1
粮食产量预测是制定农业政策的重要依据。针对农业生产系统的特征,在统计学习理论和结构风险最小化原理的基础上,建立了基于最小二乘支持向量机的时间预测模型。预测结果表明该模型具有较高的预测精度,为粮食产量预测提供了一条新的途径。 相似文献
8.
为解决稻谷品种的快速无损鉴别问题,应用多光谱图像采集设备(VideometerLab)获取了5个品种稻谷共250个试验样本在405~970 nm波长范围内的多光谱图像,提取各品种稻谷在不同波长下的光谱反射率和图像特征(面积,宽长比,色差等)作为稻谷品种鉴别的特征变量,基于最小二乘支持向量机(least-square-support vector machine,LS-SVM)建立鉴别模型,通过粒子群寻优(particle swarm optimization,PSO)算法搜索支持向量机的最优参数。将250个稻谷分为建模集(200个样本)和测试集(50个样本)分别进行试验,结果表明,采用该文的建模方法结合稻谷光谱特征和图像特征对预测集稻谷品种鉴别的正确率均在90%以上,高于对比的其他方法,该研究成果为稻谷品种的快速无损鉴别提供了一种方法。 相似文献
9.
针对俯视群养猪视频序列,提出了一种利用机器视觉技术对猪个体进行识别的方法。首先对采集的俯视群养猪视频序列进行前景检测与目标提取,获得各单只猪个体,其后建立训练样本,提取猪个体颜色、纹理及形状特征,组合构建表征猪个体的特征向量,接着对组合特征利用Isomap算法做特征融合,在最大程度保留有效识别信息的基础上降低特征维数,最后利用优化核函数的支持向量机分类器进行训练与识别。试验选取了900帧图像,试验结果表明该文所提方法切实有效,猪个体最高识别率为92.88%。该文从机器视觉角度探索了俯视群养猪的个体识别,有别于传统的RFID猪个体识别,该研究为无应激的猪个体识别提供了新思路,也为进一步探索群养猪个体行为分析等奠定了基础。 相似文献
10.
基于细菌觅食优化算法的支持向量机在土壤墒情预测中的应用 总被引:1,自引:0,他引:1
[目的]对基于细菌觅食优化算法的支持向量机在土壤墒情预测中的应用进行探讨,为现代农业研究中土壤墒情预测及农业生产提供支持。[方法]基于支持向量回归机方法建立土壤墒情预测模型,利用细菌觅食优化算法优化支持向量机预测模型的相关参数。根据从种植区采集的田间数据对模型进行建模和测试。[结果]与仅利用支持向量回归机和利用粒子群优化的支持向量回归机分别建立的模型进行对比,发现本研究所提算法建立的预测模型的预测效果更佳。[结论]该模型预测效果较好,所建模型已应用于实际项目,预测精度基本满足要求,且运行稳定。进而证明了该研究所提算法的有效性和可行性。 相似文献
11.
遥感技术在大尺度土壤盐渍化检测方面有着宏观性、实时性、动态性等优势和广阔的应用前景,但是传统的遥感图像分类方法精度不高、分类效率较低和不确定性.提出了基于支持向量机(SupportVectorMachine,SVM)的分类方法,介绍了SVM算法的基本原理,通过支持向量机分类法与传统分类方法(最大似然法和最小距离法)在盐渍化信息提取结果上进行对比,表明基于SVM的遥感图像分类方法能够较好的检测土壤的盐渍化信息,分类总精度达到95.66%,比最大似然法和最小距离法分类精度(分别为91.54%和85.42%)更高,因此更适合于遥感图像分类和盐渍化信息检测. 相似文献
12.
[目的]探讨复合式组合预测模型对滑坡两变形时间序列的预测效果,为滑坡的变形预测提供一种新的思路。[方法]基于支持向量机和BP神经网络,构建滑坡位移序列和速率序列的复合式预测模型,首先,对滑坡环境因素进行分析,提取其基本信息;其次,利用2种预测方法构建回归结构预测模型和多因素预测模型,并对两时间序列进行一重预测;最后,利用BP神经网络对一重预测结果进行了二重组合优化。[结果]滑坡库水位与滑坡两变形序列均具有较大的相关性,滑坡的稳定性很大程度上会出现周期性疲劳减弱的可能,且通过对滑坡变形的复合式预测。[结论]该方法的相对预测误差均较小,很大程度上提高了滑坡变形的预测精度和稳定性,证明了该预测模型的有效性。 相似文献
13.
基于最小二乘向量机土壤水分动态模拟与分析 总被引:2,自引:0,他引:2
土壤水分动态的模拟对水分循环与农业生产中水分的合理利用与管理具有重要的意义.应用最小二乘支持向量机对加入气象因子随机变量的红壤中土壤水分动态变化进行了训练、检验及模拟.结果表明,最小二乘支持向量机相比与神经网络方法不论是模拟性能指标还是建模的数学意义都有更好的可靠性和优越性;本研究应用最小二乘支持向量机对土壤水分动态日变化进行了模拟,并采用bior 3.3小波函数5层分解提取日变化趋势图进而把该研究区土壤水分日变化划分为4个阶段,其结果可为研究区水分合理利用和土壤墒情的预测预报提供科学依据. 相似文献
14.
15.
研究利用土壤样本实验反射光谱,分析了土壤镁(Mg)含量与土壤反射光谱的关系,比较了主成分回归分析(PCR)、偏最小二乘回归分析(PLSR)和支持向量机回归分析(SVMR)等方法,以及土壤反射光谱及其变换光谱与土壤Mg含量之间的估算模型,为土壤Mg含量高光谱估算提供依据。结果表明:PCR、PLSR、SVMR 3种建模方法在Mg含量的估算中,SVMR的估算精度相对较高,估算精度平均达到80.96%,分别比PCR和PLSR提高了6.16%、4.20%;对于不同的数学变换处理方法,一阶微分变换相对较好,估算精度平均为80.76%,分别比反射率、倒数对数变换提高了4.95%、4.61%。因此,运用土壤反射光谱一阶微分变换的SVMR进行建模,可以相对较好地估算全Mg含量,精度达84.04%。 相似文献
16.
多分类支持向量机在泥石流危险性区划中的应用 总被引:3,自引:0,他引:3
以凉山州安宁河流域129个乡镇的泥石流危险性区划资料为依据,随机选取总样本数的2/3和1/2作为训练样本,建立不同数量训练样本下安宁河流域泥石流危险性区划的多分类SVM模型,进行以乡镇为单元的区域泥石流危险性评价研究。评价结果表明,SVM模型的预测精度随着训练样本数量的增加而提高;2个SVM模型对测试样本的预测准确率均高于相应的BP神经网络模型,对训练样本的回判准确率高于或接近于BP神经网络模型。因此,支持向量机方法是一种比神经网络方法具有更优精度和更强泛化性能的新机器学习方法,在泥石流危险性评价实践中具有十分广阔的应用前景和推广应用价值。 相似文献