首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Several workers have reported that O2 has little, if any, effect on hydrolysis of urea by soil urease, but others have reported that it has a marked effect, hydrolysis being significantly faster in soils under aerobic conditions than in O2-depleted soils. In studies to account for these divergent results, we found that whereas plant residues and other readily decomposable organic materials markedly stimulated microbial production of urease in soils under aerobic conditions, they did not greatly stimulate production of urease in soils under anaerobic conditions. We also found that although anaerobic conditions retarded production of urease by soil microorganisms, they did not inhibit hydrolysis of urea by soil urease. These observations suggest that the divergent findings concerning the effect of O2 on hydrolysis of urea by soil urease may have resulted from differences in the amounts of readily decomposable organic materials in the soils studied.  相似文献   

2.
In exploring the dynamics of iron and nitrogen cycling in sediments from riparian forests we have observed a redox reaction that has not been previously described. During incubations of soil slurries under strictly anaerobic conditions, we repeatedly measured an unexpected production of both nitrite () and ferrous iron [Fe(II)]. Using this indirect evidence we hypothesize that, under anaerobic conditions, there is a biological process that uses ferric iron [Fe(III)] as an electron acceptor while oxidizing ammonium () to for energy production. This oxidation under iron reducing anaerobic conditions is thermodynamically feasible and is potentially a critical component of the N cycle in saturated sediments.  相似文献   

3.
R.K. Gupta  T.A. Singh 《Geoderma》1975,14(3):255-260
The inorganic forms of phosphorus in nine samples of surface soils from the Nainital Tarai of India were determined by a series of extractions with different reagents after incubation for 45 days under aerobic or anaerobic conditions. The forms of phosphorus in samples incubated under aerobic conditions and the pH range of 7.2–8.5 indicated that the soils had been subject to slight chemical weathering. Anaerobic incubation to simulate conditions in lowland rice paddies converted part of the inorganic phosphorus into more labile forms, based on changes in amounts of isotopically exchangeable phosphorus. Amounts of the element converted to more labile forms differed among the nine soil samples.A better correlation was found between amounts of phosphorus extracted by 0.5M NaHCO3 (Olsen's method) than by 0.03N NH4F in 0.25N HCl (Bray's method) and the isotopically exchangeable phosphorus. The better correlation suggests that the bicarbonate extraction would be the better method for estimating “availablelrd phosphorus in soils of lowland rice paddies. Recalibration of the test prior to such use seems desirable to allow for increases in amounts of phosphorus in labile forms after soils have been shifted from aerobic to anaerobic conditions.  相似文献   

4.
近年来,农用聚磷酸铵作为一种新型肥料逐渐进入我国化肥领域,常用作高浓度液体复合肥料的基础磷肥。聚磷酸铵pH值近中性,结晶温度低,具有螯合性、缓释性,有着很大发展空间。本文综述了聚磷酸铵在土壤中有效性(溶解性与移动性)的影响因素,重点分析水解速率、土壤矿物、土壤质地与水分对聚磷酸铵在土壤中的有效性,并分析聚磷酸铵在农业上的应用与发展前景。  相似文献   

5.
Abstract

Seven agricultural soils and eight forest soils from Washington state were tested for mineralizable nitrogen using both anaerobic and aerobic incubation procedures. Each procedure had been used previously to. develop nitrogen indices for agricultural and forested ecosystems. Forest soils mineralized less nitrogen under anaerobic than aerobic conditions, while the opposite was true for agricultural soils. There were statistically significant correlations between the two methods for each of the time periods tested. Experimental variations were consistently lower than previously reported.  相似文献   

6.
A microbial succession was studied under aerobic and anaerobic conditions by means of experiments with microcosms in different horizons of a chernozem. It was revealed that, under aerobic conditions, all the microorganisms grow irrespective of the soil horizon; fungi and bacteria grow at the first succession stages, and actinomycetes grow at the last stages. It was shown that, in the case of a simulated anaerobiosis commonly used to study anaerobic populations of bacteria, the mycelium of micromycetes grows in the upper part of the chernozem’s A horizon. Under anaerobic conditions, the peak of the mycelium development is shifted from the 3rd to 7th days (typical for aerobic conditions) to the 7th to 15th days of incubation. The level of mycelium length’s stabilization under aerobic and anaerobic conditions also differs: it is higher or lower than the initial one, respectively. Under anaerobic conditions, the growth of fungal mycelium, bacteria, and actinomycetes in the lower part of the A horizon and in the B horizon is extremely weak. There was not any observed growth of actinomycetes in all the chernozem’s horizons under anaerobic conditions.  相似文献   

7.
厌氧和好气条件下油菜秸秆腐解的红外光谱特征研究   总被引:3,自引:0,他引:3  
采用尼龙网袋法,研究了油菜(Brassica campestris L.)秸秆在厌氧和好气条件下的腐解规律及其红外光谱特征。结果表明:油菜秸秆还田后,腐解速率表现为前期快、后期较慢的规律。在360 d培养时间内,厌氧和好气条件下的油菜秸秆腐解率分别为60.50%和68.20%,腐解速率常数(k)分别为0.004-d-1和0.010-d-1,腐解1/2时所需时间分别为229 d和117 d。在厌氧和好气条件下,油菜秸秆的碳释放率分别为70.33%和77.43%,厌氧条件下的释放速率常数(0.025-d-1)低于好气条件(0.026-d-1)。油菜秸秆中氮的释放率分别为82.20%和87.48%,油菜秸秆在厌氧条件下的氮残留量比其在好气条件下高38.25%,且达到显著性差异水平(P0.05)。厌氧条件下的氮残留率始终高于好气条件下,且在60~90 d培养期内差异最大。红外图谱分析显示,油菜秸秆腐解过程最明显的变化在波数为3 430~3 410 cm-1、2 930 cm-1处,吸收峰吸收强度降低,表明油菜秸秆的脂族性下降。在波数为1 740 cm-1、1 419~1 425 cm-1处的吸收峰吸收强度降低,表明油菜秸秆木质素含量下降,且厌氧条件下的吸收强度高于其在好气条件下,表明厌氧条件的木质素残留较多。结果表明,油菜秸秆中羟基、甲基、亚甲基含量随腐解时间延长而降低,碳水化合物减少,脂族性下降,芳构化程度增强。好气条件有利于秸秆中纤维素、半纤维素和脂肪族化合物的分解,提高其芳香性,对土壤碳、氮的补充作用更大。  相似文献   

8.
Background and Main Features  The mineralization of eight organic chemicals (surfactants, substituted aromatic compounds, di(2-ethylhexyl)phthalate and phenanthrene) was examined in sludge-soil mixtures under aerobic, denitrifying and methanogenic conditions. Results and Discussion  Most of the chemicals were extensively or partially mineralized under aerobic conditions with mineralization half-lives between 1.5 and 12.5 days. Linear tridecyl tetra ethoxylate, di(2-ethylhexyl)phthalate and 2,4-dinitrophenol were also mineralized partially under denitrifying conditions. No mineralization of the chemicals was observed under methanogenic conditions, with the exception of a minor mineralization of linear tridecyl tetraethoxylate. Conclusion  This study indicates that the examined organic chemicals may be rapidly degraded in sludge-amended fields under aerobic conditions, and that some of the chemicals may also be degraded during denitrification. Recommendations and Outlook  When investigating the degradation of sludge-bound chemicals in soil, it is relevant to consider both aerobic and anaerobic soil regimes due to spatial and temporal variations in the redox conditions within sludge and soil. The approach presented in this article may be used for evaluation of the long-term fate of sludge-bound chemicals in soil.  相似文献   

9.
Applications of polyphosphate‐based fertilizers have been reported to have a positive impact on crop yields as compared to orthophosphate sources. Since plants take up P mainly as orthophosphate, hydrolysis rates of polyphosphates into orthophosphates will determine their fertilizer ability. Laboratory and soil incubation experiments were performed to evaluate hydrolysis rates of pyrophosphate (PP), tripolyphosphate (TP), and trimetaphosphate (TMP) in water as well as in two soils having different P‐fixing capacities. P availability was characterized by measuring the orthophosphate (ortho‐P) and polyphosphate (poly‐P) concentration in soil solution as well as the calcium‐acetate‐lactate (CAL)‐extractable amounts of both forms. In water, PP was completely hydrolyzed within 15 d, whereas TMP was hydrolyzed only to about 30% after 90 d. In the two soils, polyphosphates hydrolyzed during the incubation period increasing ortho‐P concentration in soil solution as well as in CAL extract. At the end of the incubation, no significant differences in ortho‐P concentration in soil solution and CAL extract were found in the sandy soil, whereas in the silty‐loam soil, polyphosphate applications resulted in higher soil‐solution ortho‐P concentration. Although polyphosphate hydrolysis is mainly affected by the soil‐specific enzymatic activity, it seems that polyphosphates and/or hydrolysis products are preferentially adsorbed/precipitated compared to ortho‐P in the silty loam, thereby influencing the P availability from polyphosphate sources.  相似文献   

10.
Isolates of a soil Pseudoimonas, as well as other soil bacteria, showed a different sensitivity towards NO?2 when grown under aerobic or anaerobic conditions. The tolerance to NO?2 was increased in the presence of O2: for instance, a concentration of 200parts106 of NO?2-N proved to be toxic to a Pseudomonas sp. under anaerobic conditions, whereas over 400 parts106 were needed aerobically to suppress its growth completely. The addition of NO?3 as an electron acceptor for anaerobic respiration did not overcome the inhibitive effect of NO?3. The pH range, at which NO?2 was utilized anaerobically, was narrowed with increasing NO?2 concentration (pH 6.8–8.8 at 70 parts106 of NO?2-N and 7.4–8.5 and 140 parts106 of NO?2-N).Tolerance to nitrite varied considerably among the bacteria tested. Each species was able to overcome the inhibitory effect of NO?2 up to a certain concentration, while the length of the lag phase was related to NO?2 concentration.  相似文献   

11.
为研究聚磷酸铵与生物炭、秸秆配施对滨海盐化潮土有效磷和无机磷形态转化特征的影响。利用室内培养试验,设置不施用聚磷酸铵(CK)、单施聚磷酸铵(OA)、聚磷酸铵配施生物炭(AB)、聚磷酸铵配施秸秆(AS)、聚磷酸铵配施生物炭及秸秆(ABS)5个处理。采用Tiessen修正后的Hedley磷素分级法研究了滨海盐化潮土中无机磷形态随时间的变化规律。结果表明:1)与CK相比,添加聚磷酸铵的处理有效磷含量显著提高了2.46~4.02倍(P<0.05)。培养末期,ABS处理有效磷含量较AB、AS分别显著提高了15.01%和19.20%(P<0.05)。2)随培养时间的延长,不同处理间树脂交换磷(Resin-P)含量变化趋势不同,OA和AB处理呈增加趋势,AS和ABS处理呈下降趋势,培养末期AS和ABS处理Resin-P含量较OA处理分别显著降低了39.98%和31.06%;碳酸氢钠浸提态磷(NaHCO3-P)含量随时间先增加后降低,在培养第28天达到最大值,且ABS处理最高;氢氧化钠浸提态磷(NaOH-P)和稀盐酸浸提态磷(D. HCl-P)含量随培养时间延长总体呈增加趋势,培养末期,ABS处理NaOH-P含量较OA显著提高了54.07%(P<0.05);浓盐酸浸提态磷(C. HCl-P)和残渣态磷(Residue-P)含量整体呈下降趋势,AB和ABS处理Residue-P含量在培养末期较OA显著增加了34.01%和26.12%(P<0.05)。3)滨海盐化潮土中磷素主要以HCl-P和Residue-P形式存在,约占88.60%~92.20%。相关分析表明,不同磷形态与土壤有效磷相关系数大小依次为D. HCl-P、Resin-P、NaOH-P、NaHCO3-P、Residue-P、C. HCl-P。综上,培养期内,单施聚磷酸铵或配施生物炭、秸秆能够增加NaOH-P和D. HCl-P含量,降低C. HCl-P和Residue-P含量。聚磷酸铵配施生物炭和秸秆(ABS)提高滨海盐化潮土磷素有效性的效果最好,Resin-P和D. HCl-P对有效磷贡献最大。研究结果对滨海盐化潮土磷素有效性提升和无机磷素形态转化研究具有重要意义。  相似文献   

12.
The emission of CO2 from Galician (NW Spain) forest, grassland and cropped soils was studied in a laboratory experiment, at different temperatures (10-35 °C) and at moisture contents of 100% and 160% of the field capacity (FC) of each soil (the latter value corresponds to saturated conditions, and represents between 120% and 140% of the water holding capacity, depending on the soil). In the forest soil, respiration in the flooded samples at all temperatures was lower than that at 100% field capacity. In the agricultural (grassland and cropped) soils the emission was higher (particularly at the highest incubation temperatures) in the soils wetted to 160% of the field capacity than in those wetted to 100% of the field capacity. In all cases the emission followed first order kinetics and the mineralization constants increased exponentially with temperature. In the forest soil, the Q10 values were almost the same in the soils incubated at the two moisture contents. The grassland and cropped soils displayed different responses, as the Q10 values were higher in the soils at 160% than in those at 100% of field capacity. In addition, and particularly at the highest temperatures, the rate of respiration increased sharply 9 and 17 days after the start of the incubation in the grassland and in the cropped soil, respectively. The above-mentioned anomalous response of the grassland and cropped soils under flooding conditions may be related to the agricultural use of the soils and possibly to the intense use of organic fertilizers in these soils (more than 150 kg N ha−1 year−1 added as cattle slurry or manure, respectively, in the grassland and cropped soils). The observed increase in respiration may either be related to the development of thermophilic facultative anaerobic microbes or to the formation during the incubation period of a readily metabolizable substrate, possibly originating from the remains of organic fertilizers, made accessible by physicochemical processes that occurred during incubation under conditions of high moisture.  相似文献   

13.

Purpose

Wetlands are a popular tool to treat/polish wastewater by reducing nutrient loading into the environment. In addition to nutrients, organic contaminants, such as pharmaceuticals and personal care products (PPCPs), are commonly detected in treated wastewater. Treatment wetlands may reduce concentrations of PPCPs before the treated effluent enters rivers and streams. Oxygen status may greatly affect the attenuation of PPCPs in wetland sediments by influencing microbial makeup and activity. An understanding of the effect of redox conditions on the degradation of PPCPs and the factors influencing PPCP sorption to wetland sediments is needed to maximize PPCP removal in treatment wetlands.

Materials and methods

Three wetland sediments from the San Diego Creek and Newport Bay watershed in Southern California, USA, were incubated under aerobic and anaerobic conditions to assess the degradation of several regularly occurring PPCPs and their phase distribution as a function of time.

Results and discussion

Under aerobic conditions, ibuprofen, N,N-diethyl-meta-toluamide (DEET), and gemfibrozil generally had half-life values around 20?days, while the half-life of carbamazepine was substantially longer (between 165 and 264?days). The anaerobic half-lives of gemfibrozil and ibuprofen increased by factors of 11?C34 and carbamazepine increased by factors of 1.5?C2.5. There was no detectable anaerobic degradation of DEET. The apparent phase distribution coefficient increased over time for DEET, carbamazepine and gemfibrozil, indicating that sorption of PPCPs to wetland sediments may be more limited than that predicted using equilibrium sorption coefficient values.

Conclusions

Knowledge of the capacity of wetland sediments for degrading and sorbing PPCPs is vital to the design of treatment wetlands. Degradation of the selected PPCPs was enhanced under aerobic conditions as compared to anaerobic conditions. Sorption to sediments increased with contact time, indicating that longer hydraulic retention will increase wetland capabilities for removing PPCPs.  相似文献   

14.
液体培养研究不同土壤中硝化活性   总被引:2,自引:0,他引:2  
YUAN Fei  RAN Wei  SHEN Qi-Rong 《土壤圈》2005,15(3):379-385
A red soil, a fluvo-aquic soil and a permeable paddy soil were used in a long-term investigation to study changes in nitrification with treatments: 1) soil incubation, 2) liquid incubation inoculated with soil samples, and 3) liquid incubation inoculated with ammonia-oxidizing bacteria (AOB) from the soils. There were significant differences (P < 0.001) in nitrification rates among the three soils when measured for 28 days by adding (NH4)2SO4 at the rate of 154 mg N kg-1 dry soil to fresh soil. However, the amounts of nitrifying bacteria in the three soils were not related to soil nitrification capacity. When the soil samples or the isolates of AOB enriched from the corresponding soil were incubated in liquid with pH 5.8, 7.0 and 8.0 buffers and 10 mmol L-1 ammonium nitrogen, there were no significant nitrification differences in the same soil type at each pH. The ability to oxidize ammonia through AOB from different types of soils in a homogeneous culture medium was similar, and the soil nitrification capacity could reflect the inherent properties of a soil. Altering the culture medium pH of individual soil type also showed that acidification of an alkaline fluvo-aquic soil decreased nitrification capacity, whereas alkalinization of the acidic red soil and permeable paddy soil increased their nitrification. For a better insight into factors influencing soil nitrification processes, soil properties including texture and clay composition should be considered.  相似文献   

15.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

16.
荣娟敏  孙波 《土壤》2012,44(1):84-89
试验选择中国东部3个气候带上的主要农田土壤:寒温带黑龙江海伦的黏化湿润均腐土(黑土)、暖温带河南封丘的淡色潮润雏形土(潮土)和中亚热带江西鹰潭的黏化湿润富铁土(红壤),在海伦、封丘和鹰潭3个生态试验站建立土壤置换试验,研究玉米不同生育期水热条件和土壤类型对好氧性纤维素分解菌数量的影响。结果表明,暖温带气候条件下土壤好氧性纤维素分解菌数量高于中温带和中亚热带气候条件;土壤类型显著影响了土壤好氧性纤维素分解菌数量,变化顺序为黑土>潮土>红壤;在玉米不同生育期土壤纤维素分解菌数量的顺序均为抽雄期>收获后>种植前;施用化肥提高了土壤中好氧性纤维素分解菌的数量。相关分析显示土壤好氧性纤维素分解菌数量与土壤有机质、全氮、全磷、全钾、含水量和pH值呈显著正相关,土壤温度和含水量是影响土壤好氧性纤维素分解菌数量的重要环境因子。通径分析结果表明,土壤养分是决定土壤好氧性纤维素分解菌数量的主要因子,水热条件对其直接作用并不明显,但水热、施肥、土壤类型对纤维素分解菌数量有显著的交互作用。  相似文献   

17.
Summary Bacterial biomass and numbers of bacterivorous naked amoebae were estimated daily in soil associated with barley roots and, to avoid the influence of roots, in soil from a field in its fifth summer under bare fallow. The estimates were associated with two rainfall events and were started just before the first. Increases in bacteria were observed after each rainfall, and bacterial production was about the same size for both treatments. A peak in naked amoebae followed each burst of bacterial production in the root-associated soil, whereas in the fallowed soil protozoan production was low after the first rainfall and undetectable after the second. The bacterial populations in the fallowed soil had yet to decline by the end of the 12-day study, probably because grazing pressure by protozoa was low. Calculations based (1) on short-term decreases in bacterial biomass in soil close to roots or (2) on the amount of C added to the soil by plants over the growing season indicated that N released via bacterial-protozoan interactions contributed 10%–17% of the N taken up by the fertilized barley.  相似文献   

18.
Three soils were incubated for 4-day periods with selenite (0-5 mg Se kg−1) and the effect of straw amendment was also studied for one of these soils. The same soil was also incubated for up to 6 weeks, with and without straw and selenite (0-2 mg Se kg−1). Changes in microbial activity (oxygen respiration) and dynamics (total, fungal biomass; bacterial density number) were assessed. Selenium fractionation and volatilization were also quantified. Selenium addition had no marked effect on respiratory activity, total and fungal biomass whatever the incubation period, but inhibited the growth of heterotrophic bacteria in the longer term. When straw was added, the same trend was observed with more variability. The volatilization losses of Se differed between soils but did not vary significantly over the 6-week period and were not affected by straw addition. Freshly added Se was more easily extracted than native soil Se and its extractability decreased with time, whereas no change in the fractionation of native Se was observed. This study shows that moderate additions of Se may influence microbial dynamics in aerated soil but could not establish a causal link with changes in Se fractionation.  相似文献   

19.
20.
温度对厌氧条件下不同pH水稻土氮素矿化的影响   总被引:2,自引:0,他引:2  
氮矿化反应是土壤生态系统氮素循环的重要环节之一,决定了土壤氮素的可利用性。温度和pH是影响氮素矿化的重要环境因子。为研究厌氧条件下温度对不同pH水稻土氮素矿化的影响,本文以两种不同pH的水稻土为试验对象,在厌氧条件下,设置15℃、25℃、37℃和50℃4个温度,结合一级反应动力学方程式和有效积温式研究温度对土壤氮素矿化势、矿化速率、矿化程度和矿化势/全氮等矿化参数的影响。结果表明,两种土壤氮素矿化势均随着温度的升高而增大。在15~37℃范围内,两种土壤的矿化速率以及矿化程度均随着温度升高而增大,且同种温度下两土壤差异不显著。但在37~50℃范围内,随着温度的升高,两种pH土壤矿化速率以及矿化程度有增大也有减小,差异达1%显著水平。说明在高温范围内,不同pH土壤氮素矿化对温度的响应有很大差异。4个温度下,矿化势/全氮的值均随温度升高而增大,说明有机氮的品质随温度升高而提高。通过温度与矿化参数的相关性分析发现,在15~37℃范围内,各矿化参数与温度均呈正相关,且相关性极显著(P0.01);但37~50℃时,各矿化参数与温度相关性均较小,有的为负相关。本试验测定各培养周期的pH,发现在培养过程中,两种土壤pH波动不大,对土壤氮矿化的变化无影响。结果表明,厌氧条件下,尽管中、低温时不同pH水稻土氮素矿化对温度有相似的响应,但高温时不同pH土壤的氮素矿化显著不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号