首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stearyl methacrylate modified polysiloxane/nanocomposite was synthesized by graft copolymerization between stearyl methacrylate modified polysiloxane with pendent epoxy groups and amino-functionalized nano silica. Then it was utilized to fabricate the superhydrophobic cotton fabric by one-step method. The structures, chemical compositions, thermal properties, surface morphology and wettability were characterized by Fourier Transform Infrared Spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), Thermo-gravimetric analyzer (TGA), Scanning electron microscopy (SEM) and Static contact angle analyzer. Results showed that a hydrophobic polysiloxane film and many nano-scaled tubercles were coated on the surface of the treated cotton fabrics plus their inherent microscaled roughness, which were the reasons why cotton fabric changed from hydrophilicity to hydrophobicity. In addition, with increase of the amount of nanocomposite, hydrophobicity of the treated cotton fabric would be enhanced; water contact angle of this fabric could attain 157°, which was higher than 141.5° reached by the fabric treated with stearyl methacrylate modified polysiloxane. The superhydrophobic cotton fabric also possessed favorable washing durability. On the other hand, its air permeability, color and softness would not be influenced instead.  相似文献   

2.
A novel dodecylphenylsiloxane oligomer resin/nanocomposite (PHDESR-SiO2) was prepared by graft copolymerization between dodecyl modified phenylsiloxane resin with pendent epoxy groups (PHDESR) and amino-functionalized silica nanoparticles (BTEPA-SiO2). PHDESR-SiO2 was then used to prepare a super hydrophobic surface on cotton fabric by a facile solution-immersion process method. Chemical structures, chemical compositions, wettability, surface morphology, and thermal properties were investigated by Fourier Transform Infrared Spectrum (FT-IR), 1H-NMR spectrum, X-ray photoelectron spectroscopy (XPS), static contact angle analyzer, scanning electron microscopy (SEM), Particle size distribution (PSD) and thermo-gravimetric analysis (TGA). The results showed that the target product PHDESR-SiO2 has an anticipative structure with many micro/nanostructure tubercles, a cross-linked network hydrophobic organosilicon resin film and many clusters of cylindrical dodecyl molecular brushes. This created super hydrophobic structure on the surface of the treated cotton fabrics. XPS analysis indicated that the long carbon chain groups had a slight tendency to enrich the film-air interface. In addition, PHDESR-SiO2 can provide good hydrophobicity for the treated fabric. As the dose of PHDESR-SiO2 increased, the hydrophobicity of the treated fabric enhanced and consequently the water static contact angle reached 152.5 °. This had little influence on the softness, color, and gas permeability of the fabrics. This makes it slightly stiff at high doses, and the super-hydrophobic cotton fabric also had good launderability.  相似文献   

3.
In the presence of Pt catalyst, α,ω-hydrogenpolysiloxane reacted with allyl glycidyl ether, and an intermediate α,ω-diepoxysiloxane was formed. The epoxy cyclic-opening reaction was conducted between the intermediate and polyetheramine in isopropanol solution, the silicone polyetheramine block copolymer (BPEAS) was thus made. The chemical structures of BPEAS were characterized using IR and 1H-NMR separately. Then cotton fabric was treated with BPEAS for application purpose. The finishing effects were tested in terms of film morphology, hydrophilic ability, softness and mechanical properties. The recorded results showed that BPEAS can be used directly to treat cotton fabrics without adding any emulsifier at the viscosity of 6700 mPa·s and amino value of 0.6009 mmol/g. Bending rigidity and hysteresis of the treated fabric decreased by 53.53 % and 67.39 %, the drape coefficient dropped by 15 %, whereas the wrinkle recovery angle increased by 57.14 %. The treated cotton fabric is hydrophilic, and has a bulky soft hand, better anti-wrinkle property compared to the untreated one.  相似文献   

4.
The supramolecule CPES/ASO was self-assembled from carboxylated polyether-block-polydimethylsiloxane (CPES) and N-β-aminoethyl-γ-aminopropyl polysiloxane (ASO) in ethyl acetate solution. The film morphology and performance of CPES/ASO on cotton substrates were investigated by field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray photoelectron microscope (XPS), and so on. The results indicated that a polysiloxane resin film was coated on the treated fiber surface and able to decrease the root mean square roughness (R q ) of the treated fiber conspicuously. Morphology of higher peaks circled by many smaller peaks was observed on the film surface, which was partly similar to that of CPES/ASO on the silicon wafer. Besides, when the mass ratio of CPES to ASO was 2:1, the fabric treated by CPES/ASO showed the best softness and had a comfortable oily tactile.  相似文献   

5.
A facile and inexpensive way to prepare self-crosslinkable poly(dimethylsiloxane) (PDMS) for superhydrophobic treatment of cotton fabrics is reported in the study. Through thiol-ene click reaction between mercaptopropyltrimethoxysilane (MPTMOS) and vinyl-containing poly(dimethylsiloxane) (VPDMS), PDMS-g-TMOS can be simply and quickly synthesized. The trimethoxysilane group of PDMS-g-TMOS can react with hydroxyl group on cotton fabric and other -Si(OCH3)3 groups. The synthesized polysiloxane (PDMS-g-TMOS) was identified by FT-IR and 1H-NMR. The morphology of the treated cotton fabric was observed by SEM and XPS was used to analyze the elemental composition on the surface of cotton fabric. The analysis results indicated that the surface was fully covered with PDMS. Due to the low surface energy of PDMS and the rough surfaces of cotton fabric, the optimized water contact angle (WCA) and sliding angle were respectively 154°±0.4° and 14°±0.5°, indicating superhydrophobicity. Moreover, water spray test (AATCC Test Method 22-2010) was also applied to evaluate the water repellency of treated cotton fabric and a score of 90 was assigned according to AATCC Test Method 22-2010. The durability of treated cotton fabric was tested by 50 laundering cycles. The resultant WCA barely decreased and the score of water spray test dropped from 90 to 80, showing the reasonable wash durability.  相似文献   

6.
Photoactive blend films consisting of sulfonated polyether ether ketone and polyvinyl alcohol were incorporated onto cotton fibers to prepare self-decontaminating cotton fabrics. Electron paramagnetic resonance (EPR) spectroscopy was used to confirm the free-radical nature of the photoactive film and the cotton fabric. Several physical and mechanical properties of the fabrics, such as surface morphology, tensile strength, softness, whiteness, and water vapor permeability, were investigated, and it was found that the treated cottons basically maintained the original performance. Moreover, favorable photo-induced self-decontaminating capabilities of the treated fabrics were demonstrated against three kinds of pollutants, including decomposition of 80.2 % diuron under UVA light irradiation for 3 hours, inactivation of 93.33 % of E.coli and 86.67 % of S.aureus, and degradation of 64.1 % methyl orange under the light irradiation for 1 hour.  相似文献   

7.
Producing fabric with multifunctional properties has been recently a center of research and utilizing nanoparticles is an efficient approach to gain this purpose. Here, nano TiO2 photo catalyst and polysiloxane softener were utilized as stabilizer on the acrylic fabric to obtain soft handle, hydrophilic, and self-cleaning features on the fabric. The effect of various concentrations of nano TiO2 and polysiloxane on the fabric handle, water droplet absorption time, and self-cleaning properties of the fabric has been mathematically modeled based on the response surface methodology (RSM). The optimized treatment conditions indicated that treated acrylic fabric with 2.19 % polysiloxane and 0.68 % nano TiO2 produced the rigidity of 26.8 g.cm, water absorption time of 15.8 s and self-cleaning of ΔE T *=18.1. Also increasing the concentration of polysiloxane enhanced both wettability and photoactive properties of nano TiO2 treated acrylic fabrics. Further, the nano TiO2/polysiloxane treated acrylic fabrics is significantly enable to absorb the light with wavelength lower than 400 nm and improve discoloration of C.I. Reactive Yellow 1.  相似文献   

8.
A water-soluble polysiloxane (PE-PUVSi) bearing functional benzophenone derivative and hydrophilic polyether side groups was successfully synthesized by hydrosilylation of polyhydromethylsiloxane (PHMS) with 2-hydroxy-4-(β-allyloxy-γ-hydroxy)propyloxy benzophenone (MUV-O) and allyl polyoxyethylenepolyoxypropylene ether (F6). The chemical structure, film morphology, and performance of the synthesized polysiloxane were investigated and characterized by spectral analysis, atomic force microscope (AFM), Kawabata evaluation system (KES), and other instruments. Experiment results indicate that PE-PUVSi had an intensive UV-absorbing capacity at wavelengths of 243.6, 289.2, and 325.0 nm. It formed a hydrophilic polysiloxane film on both the fiber and the silicon wafer surface. On the wafer surface, PE-PUVSi actually showed non-homogeneous and phase-separated microscopic film morphology. In addition, PE-PUVSi could provide a bulky softness, good wettability, and antistatic property for the treated fabric and make the treated cotton fabric show a low UV transmittance at the wavelengths between 270 and 330 nm.  相似文献   

9.
A quaternary ammonium compound, 2-hydroxypropyltrimethylammonium chloride amino-terminated hyper-branched polymer (HBP-HTC), was synthesized from an amino-terminated hyperbranched polymer (HBP-NH2) and 2,3-epoxypropyltrimethylammonium chloride (EPTAC) as a grafting agent in aqueous solution. Its molecular weight and possible structure were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR). The cotton fabric was treated with 2 g/l HBP-HTC aqueous solution for 30 min at room temperature to provide the cotton fabric with antimicrobial properties. The antimicrobial activities of the HBP-HTC aqueous solutions and the HBP-HTC treated cotton fabrics were evaluated quantitatively. The results indicated that the HBP-HTC treated cotton fabric showed 99.92 % reduction of bacteria S. aureus and 99.66 % reduction of bacteria E. coli, respectively. The antimicrobial activities of the HBP-HTC treated cotton fabrics were maintained at over 99.00 % reduction level even after being exposed to 20 consecutive home laundering conditions.  相似文献   

10.
The main goal of present study was the fabrication of cotton fabric with special functions, including electrical conductivity, magnetic, antibacterial, and ultraviolet (UV) blocking. In this regard, the cotton fabric was primarily coated with graphene oxide and then reduction of graphene oxide and synthesis of magnetite nanoparticles accomplished in one step. The alkaline hydrolysis of magnetite precursors and reduction of graphene oxide was simultaneously performed using sodium hydroxide to produce reduced graphene oxide/Fe3O4 nanocomposite on the fabric surface. The prepared cotton fabrics were characterized with field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The treated fabrics with reduced graphene oxide/Fe3O4 nanocomposite displayed a low electrical resistivity i.e. 80 kΩ/sq. Furthermore, the coated fabrics showed reasonable magnetic properties due to the presence of magnetite nanoparticles on the surface of cotton fabrics. Moreover, this process imparted proper antibacterial properties and UV blocking activity to cotton samples.  相似文献   

11.
α,ω-di[(4-butoxy-piperazin-1-yl)-phosphinic acid methyl ether]-terminated linear polysiloxane (PNPDMS) was synthesized and utilized as the flame retardant and hydrophobing agent. The flame retardance and thermal decomposition behaviors of cotton fabrics were systematically estimated by limiting oxygen index (LOI), thermogravimetric analysis and vertical burning test, respectively. It was found that the LOI of cotton fabric treated with PNPDMS enhanced to 29.82 % compared with cotton fabric without treatment, whose LOI was only 18.00 %. The treated cotton fabric showed a shorter char length, a shorter After-flame time, and no After-glow time as revealed in vertical burning test. The mechanical property in treated cotton fabric was slightly decrease. Furthermore, the grade of water repellency of treated cotton fabric reached to 90 and water contact angle (WCA) increased to 141.90° compared with cotton fabric without treatment whose WCA was 62.80°. The result showed that the cotton fabric treated with PNPDMS exhibited excellent flame retardance and hydrophobic properties.  相似文献   

12.
A novel reactive flame retardant (FR) containing phosphorus, nitrogen, and silicon was synthesized successfully, and its chemical structure was fully characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectrometry (1H-NMR and 31P-NMR). Then it was used to impart flame resistance to cotton fabrics. Vertical flammability and limiting oxygen index test were used to evaluate the flame retardancy of the cotton fabrics treated with FR. When the cotton treated with 150 g/l FR and 50 g/l sodium hypophosphite, the finished cotton can pass the vertical flammability test. Thermogravimetry (TG) was used to evaluate thermal behavior of FR and cotton fabrics. TG results demonstrated that the FR has good thermostability and char-forming ability. After treatment with FR, the thermal stability of the cotton fabrics was clearly improved, indicating that the FR can protect cotton fabric from fire to a certain degree. Furthermore, attenuated total reflection Fourier transform infrared spectroscopy was utilized to characterize the chemical structure of FR treated cotton fabrics. Finally, the surface morphology in different regions of the treated cotton was observed using scanning electron microscopy.  相似文献   

13.
Cellulose fabrics (viscose and cotton) were treated with atmospheric pressure dielectric barrier discharge (DBD) in air. After DBD treatment, samples were characterized and volume electrical resistance was measured under different relative humidity conditions (φ=40-55 %). Results have shown that DBD treatment increases wettability and polar surface functional groups content, which consequently causes a decrease of volume electrical resistivity of cellulose fabrics in measured relative humidity range (φ=40-55 %). Metal ions (silver, copper, and zinc) were incorporated in untreated and plasma treated samples through sorption from aqueous solutions and incorporation of metal ions into plasma treated cellulose samples decreased electrical resistivity even further. Resistivity of cotton and viscose fabrics with incorporated metal ions followed the order Zn2+ > Cu2+ > Ag+. The most pronounced decrease, for entire order of a magnitude, was obtained by modification of cotton fabric with DBD and silver ions, where value of resistivity dropped from GΩ to a several dozens of MΩ.  相似文献   

14.
Maleic acid (MA) and itaconic acid (IA) used as crosslinking agents for cotton fabrics are more cost-effective than the most efficient nonformaldehyde crosslinker 1,2,3,4-butanetetracarboxylic acid (BTCA), but poor stability of finishing bath and fabric yellowing are the main disadvantage of MA/IA in situ polymerization and crosslinking system. In this research, the application performance improvement of MA/IA crosslinking system for cotton fabrics was studied. Replacement of the widely used sodium hypophosphite (SHP) with potassium hypophosphite (PHP) as catalyst allowed for obtaining a stable finishing bath under ambient temperature and led to improved final durable press (DP) performance of the treated fabrics. The influences of PHP concentration, curing temperature, and curing time on the performance of finished fabrics were investigated. Cotton fabrics treated by MA/IA/PHP crosslinking system exhibited comparable DP performance and laundering durability to that finished with BTCA. To address the fabric yellowing problem, the residual MA and IA attached on the treated fabrics by single-ended ester linkage was determined by HPLC. The data indicated that the degree of fabric yellowing was linearly related to the unpolymerized carboxylic acid MA and IA concentration on the treated fabrics. Several approaches were explored to improve the whiteness of MA/IA/PHP crosslinked fabrics. It was found that steam drying with 30-50 % humidity could effectively improve fabric whiteness. The findings of this study have significant implications for better application of unsaturated polycarboxylic acids in crosslinking of cellulose.  相似文献   

15.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

16.
In this research work, behavior of flexural stiffness of core spun cotton spandex single jersey, 1x1 rib and interlock fabrics was studied under relaxation and machine washing treatments. Results are compared with similar fabrics made from 100 % cotton. Fabric weight density increased with the progression of treatments and it is proportionate to the fabric tightness factor (stitch length?1). Even though both types of fabrics had same machine set stitch lengths, cotton/spandex fabrics have shown the higher fabric weight densities than that of 100 % cotton fabrics. Although 1x1 rib and single jersey fabrics knitted with the same machine set stitch lengths, rib fabrics have given higher fabric weight densities than single jersey fabrics. Among the three knitted structures, interlock fabrics with higher machine set stitch lengths gave the higher fabric weights. Fabric stiffness and flexural rigidity have given higher values under the progression of treatments and it was found that higher values of stiffness have given by cotton/spandex knitted fabrics compared to their cotton fabrics. Fabric stiffness and flexural rigidity in wale direction were higher than that in course direction, but it is only observed in single jersey fabrics. However, 1x1 rib and interlock fabrics have shown an opposite behavior. It was also observed a positive correlation between TF (i.e.: stitch length?1) and bending length/flexural rigidity in both fabric types. Lower flexural rigidities reported with single jersey structures and highest values gave with interlock structures of cotton/spandex and cotton fabrics.  相似文献   

17.
Nano-SiOx suspension was prepared for its unique optical performance to improve the anti-ultraviolet property of cotton fabric in this paper. The experimental results showed that UV-resistance property of thus treated fabrics had been enhanced significantly. The spectrum of absorption, reflection, and transmittance of the treated fabric was analyzed during the optimized processing. The mechanical property of the treated fabric displayed a little increase compared with the original untreated fabric. The morphology of the treated fabric was studied by SEM. The UPF (Ultraviolet Protection Factor) of the fabric treated with nano-SiOx suspension reached 62, much higher than that of the original untreated fabric. Moreover, after 50 home launderings, the UV-blocking property of treated fabric changed little due to the strong affinity between the nano-SiOx particles and cotton fiber.  相似文献   

18.
This study reports the results of an investigation aiming at finding what affect nano titania (TiO2) and nano strontium titanate (SrTiO3) on self-cleaning of cotton fabrics. The photocatalytic activity of nano strontium titanate has been examined on cotton fabric under UV irradiation in various concentrations in mixing of nano titania. The amount of loaded nano titania and nano strontium titanate particles on cotton fabrics were investigated using X-ray fluorescence spectrometry (XRF) and crystallinity of coatings by X-ray diffraction spectroscopy (XRD). The treated cotton fabrics, which were stained with two common synthesized dyes, were exposed to 400 W UV radiation for 30 hours and their self-cleaning property was investigated by a reflectance spectrophotometer. Scanning electron microscope (SEM) images show pervasion of nano materials on the surface of the treated cotton. Adding nano strontium titanate to nano titania showed the most promising photocatalytic activity toward dye degradation.  相似文献   

19.
The flame retardant behavior of cotton fabric treated with phosphorus-nitrogen containing triazine compound was evaluated. It was found that cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) is an excellent starting material for the preparation of phosphonate flame retardants that interact well with cotton to improve flame resistance (FR) performance. Tetraethyl 6-chloro-1,3,5-triazine-2,4-diyldiphosphonate (TECTDP) has been prepared by a simple one-step reaction in high yield (98.0 %). Cotton fabrics treated with TECTDP result in covalent bond formation between TECTDP and hydroxyl groups in cotton fabrics. This FR system provides an efficient flame retardant for cotton textiles at low cost to meet government mandates. In this study, the FR material was synthesized and characterized by 1H and 13C nuclear magnetic resonance (NMR), and LC-MS spectroscopy. The chemical structure of cotton twill fabric treated with TECTDP by pad-dry-cure method was analyzed by FT-MIR and SEM. Furthermore, the thermal and flammability properties were evaluated by thermogravimetric analysis (TGA), limiting oxygen index (LOI, ASTM D-2863-09), and a vertical flame test (ASTM D-6413-08).  相似文献   

20.
Handle is an important factor when designing the end-uses of fabric as it is also a critical factor for purchasing decision. In the present study, the Kawabata Evaluation System for Fabrics (KES-F) was used for measuring the fabric handle of BTCA-TiO2 treated cotton fabric with or without plasma pre-treatment. The results revealed that the BTCA-TiO2 treated cotton fabrics without plasma pre-treatment had a negative effect on tensile, shearing, compressional, and surface properties while the bending properties were improved. On the other hand, the plasma pre-treatment improved the tensile and compressional properties, but not the bending, shearing, and surface properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号