共查询到20条相似文献,搜索用时 2 毫秒
1.
Textile sound absorbents are getting more and more popular on the market as noise reduction is a major requirement for human comfort today. In this paper we focus on a new textile material for sound absorption, by investigating the acoustic characteristics of nanofibers. Through impedance tube method we measured the sound absorption coefficients of multiple layers of nanofiber webs and compared those with microfiber materials per fabric weight. We also examined the effect of layers of nanofiber webs on regularfiber knitted fabric on sound absorption. The test results showed that the sound absorption coefficients of nanofiber layers were superior that of microfiber fabrics in the frequency range 1000–4000 Hz. In this range, the sound absorption of nanofiber webs improved with numbers of layers. Also, adding nanofiber web plies to regularfiber fleece increased the sound absorption coefficient with 85 % at 4000 Hz. From our results we could observe differences in the sound absorption coefficients between two test methods, which are higher absorbance coefficients through the reverberation room method than impedance tube method. 相似文献
2.
A novel biodegradable material derived from thermoplastic potato starch was prepared with intended uses in high moisture environments where its high water sorption characteristics are beneficial, such as wound dressing, transdermal patches or food packaging. A modified composite was prepared for this purpose by reactive extrusion whereby potato starch and 2.5-25% (w/w) sisal cellulose fibers were compounded together in the presence of 2.7% (w/w) sodium trimetaphosphate. The fibers were included to increase the wet strength of the material. A low degree of substitution (0.088-0.113) was sought by bound phosphate groups with anionic character in order to overcome a reduction in moisture absorption capacity resulting from fiber incorporation, yet being insufficient to cause embrittlement via crosslinking. The results showed the approach has sufficient merit to minimize the influence of the hydrophobic fibers on the water absorption capacity of the starch material but adhering to so low of a degree of substitution could not fully prevent a reduction. The results also suggested that the fibers may have participated in the crosslinking reaction. 相似文献
3.
Selection for water absorption, a fundamental wheat quality parameter, has been a challenge in wheat breeding programs due to limited wheat materials available for milling and consequent time-consuming farinograph test. Hence, a high shear-based method, which requires 8 g of flour and less than 10 min per test, was proposed to predict flour water absorption using the Brabender GlutoPeak instrument. Highly significant positive linear relationship (r2 = 0.97) was found between GlutoPeak maximum torque and farinograph water absorption for 83 flour samples prepared with Bühler test mill from wheat lines under evaluation in the Canadian wheat variety registration trials. Similar strong correlation (r2 = 0.96) was obtained from flours (n = 63) prepared with Quadrumat Junior laboratory mill using small amount of wheat. Flour prepared either with Bühler test mill or Quadrumat Junior mill can be used for predicting water absorption effectively. GlutoPeak maximum torque was found to be independent of dough strength (r2 = 0.02) as measured by extensigraph. GlutoPeak test can be a powerful tool for rapid and reliable prediction of water absorption of wheat flour. 相似文献
4.
Seung-Yeol Jeon Woong-Ryeol Yu Min Sun Kim Joon Seok Lee Jong Won Kim 《Fibers and Polymers》2014,15(6):1202-1210
As nonwoven mats are randomly oriented fiber assemblies, the tensile strength of nonwoven mats is determined by their microstructural factors, such as fiber orientation, fiber volume fraction, and fiber-fiber contact level. The complex microstructure of nonwoven mats must be reasonably simplified to properly predict their mechanical properties within affordable efforts. In this study, a new parameter, so called contact efficiency, is defined to describe the fiber-fiber contact level of nonwoven mats. Micro X-ray computer tomography (CT) is employed to characterize the microstructure of needlepunched nonwoven mats made of polypropylene short fibers. The fiber orientation and volume fraction are obtained by analyzing 2D sectional CT image of the nonwoven mat, while the contact efficiency is determined from 3D CT image. A statistical model, developed originally for staple yarns, is modified to predict the tensile strength of the nonwoven mat using the microstructural factors obtained from CT analysis. The prediction is then compared with experiments to validate that the current model incorporating the contact efficiency is highly suitable for predicting the tensile strength of nonwoven mats. 相似文献
5.
This work aims to predict the mechanical properties of woven jute/banana hybrid composite. Woven fabrics are arranged in three layers of different sequence. Resin used in this work is Epoxy LY556 with hardener HY951. Composite specimen are prepared by hand-layup techniques. The effect of layering sequence on the mechanical properties namely tensile, flexural and impact was analysed. It is found that the tensile and flexural strength of hybrid composite (Banana/Jute/Banana) is higher than that of individual composites. Similarly, the impact strength of Jute/Banana/Jute hybrid composite is better than other types of composite. It is found that the moisture absorption of woven banana fiber composite is lesser than the hybrid composite. Fractography study of the fractured specimen is carried out using scanning electron microscope to analyse the fracture behaviour of the hybrid composite. 相似文献
6.
In this study, energy absorption capacity, flexural and dynamic properties of flax fibre reinforced epoxy polymer composite (FFRP) tubes are investigated. The energy absorption capacity of the tubes is investigated under uniaxial compression. Flexural behaviour of the tubes is studied under four-point bending and the dynamic properties (i.e., natural frequency and damping characteristics) are evaluated by impact hammer vibration testing of the tube specimens. The damping characteristics of the tubes are determined by using both a logarithmic decrement curve and the half-peak bandwidth method. The influence of tube laminate thickness and specimen size on the mechanical properties of FFRP tubes is determined. Compressive testing indicates that the FFRP tube provides a specific absorbed energy of 22 J/g, which is close to the conventional metal energy absorption materials, i.e. stainless steel and aluminium tubes. Flexural study shows that the FFRP tube exhibits a brittle failure as similar to that of the FFRP composites in a flat-coupon tension. The load carrying capacity and deflection of the tube increase with an increase in the tube thickness. Impact loading test concludes that an increase in tube thickness leads to a reduction in natural frequency and damping ratio of the tubes. The FFRP tubes have sizedependent dynamic properties, i.e. an increase in tube size increased the natural frequency but reduced the damping ratio of the specimens remarkably. However, all FFRP tubes have high damping ratios, thus reducing the effect of dynamic loading on the structural response. Therefore, this study suggests that FFRP tubes could be used in several structural applications, i.e. in automotive as energy absorbers and in civil infrastructure as poles. 相似文献
7.
This paper presents the three-point bending properties of 3D needle-punched composites with two fiber architectures at room and elevated temperatures. The influences of temperature and fiber architectures on the load/deflection curves, bending strength and bending stiffness are analyzed. Macro-Fracture morphology and SEM micrographs are examined to understand the damage and failure mechanism. The results show that the bending properties of plain structure needle-punched composites are superior to those with non-woven structure. Meanwhile, the bending properties of composites decrease significantly with the increase of testing temperature. Moreover, the damage and failure patterns of composites vary with fiber architecture and testing temperatures. For the plain structure, 90 ° and 0 ° fiber bundles can bear the load together. At room temperature, the composite shows brittle fracture feature and exhibits local damage with matrix cracking, breakage and tearing of the fibers. While at a higher temperature, the composite shows less fracture and becomes more softened and plastic. It damages with matrix cracking, falling off and plastic deformation, fiber layer/web delaminating, and interface debonding. 相似文献
8.
9.
An efficient and reproducible protocol was established for genetic transformation in Jatropha curcas through microprojectile bombardment. Decotyledonated embryos from mature seeds were pre-cultured for 5 days and elongated embryonic axis was subjected to bombardment for the optimization of physical parameters. The frequency of transient gus expression and survival of putative transformants were taken into consideration for the assessment of physical parameters. Statistical analysis reveal that microcarrier size, helium pressure and target distance had significant influence on transformation efficiency. Among different variables evaluated, microcarrier size 1 μm, He pressure 1100 and 1350 psi with a target distance of 9 and 12 cm respectively were found optimum by co-relating microcarrier size, helium pressure and target distance on the frequency of gus expression and survival of putative transformants. Selection of putative transformants was done with increasing concentrations (5-7 mg L−1) of hygromycin. The integration of desired gene into Jatropha genome was confirmed with PCR amplification of 0.96 and 1.28 kb bands of hptII and gus gene respectively from the T0 transgenics and Southern blot analysis using PCR amplified DIG labeled hptII gene as a probe. A successful attempt of genetic transformation was made with optimized conditions using particle gene gun and establishing a stable transformation in J. curcas with 44.7% transformation efficiency. The procedure described will be very useful for the introgression of desired genes into J. curcas and the molecular analysis of gene function. 相似文献
10.
In the Mediterranean farming systems of the Western Australian wheatbelt, crop yields are influenced primarily by the amount and distribution of rainfall and the soil's capacity to hold moisture. The wheatbelt's growing season rainfall varies in the range of 200–400 mm (average) and the plant available water holding capacity (PAWC) of soils is generally in the 40–140 mm range. The grain yield of wheat is sensitive to this combination of small rainfall and small storage capacity.In this study, we explore the relationship between yield and PAWC using a combination of simulation modelling and analysis of field data. Crop yields and soil properties were monitored in detail at 17 locations (PAWCs 43–131 mm) across six seasons (1997–2005). Crop yields were also simulated using the APSIM crop simulator (RMSE = 311 kg/ha) to evaluate the long-term relationship between crop yield and plant available water capacity using 106 years of historical climate data.The relationship between crop yield and PAWC varied with season, and two important factors emerged: (1) for PAWC < 65 mm, there was a linear relationship with crop yields that ranged from 17 kg/ha/mm to 58 kg/ha/mm of PAWC across seasons; (2) for PAWC 65–131 mm the crop yield response to PAWC ranged from 11.5 kg/ha/mm in 45% of seasons to no response.The impact of PAWC on crop yield was reduced in seasons with late rainfall, and magnified in seasons with reduced rainfall late in the growing season. Six distinct season types with different yield–PAWC relationships are identified and season-specific management strategies that exploit within-field variation in PAWC are developed to manage the spatial variation of PAWC in a field. 相似文献
11.
Pesticides are very important in European rice production. For appropriate environmental protection, it is useful to predict the potential impact of pesticides after application, in paddy fields, in paddy runoff, and in the surrounding water, by calculating predicted environmental concentrations (PECs). In this paper, a joint simulation is described, coupling a field-scale pesticide fate model (RICEWQ) and a transportation model (RIVWQ) to evaluate the potential for predicting environmental concentrations of pesticides in the paddy field and adjacent surface water bodies and comparing the predicted values with the monitoring data. The results demonstrate that the application of the calibrated field-scale RICEWQ model is a conservative method to predict the PEC at the watershed level, overestimating the observed data; the coupled RICEWQ and RIVWQ models could be adequately used to predict PECs in the surrounding water at watershed level and in the higher tier risk assessment procedure. 相似文献
12.
Poly (vinyl alcohol) (PVA)/multi walled carbon nanotubes (MWNT) nanocomposite films were fabricated and their microwave absorption behavior were evaluated using vector network analyzer in the frequency range of 8–12 GHz (Xband). The uniform, stable dispersion and well oriented MWNT within the PVA matrix were achieved through using sodium dodecyl sulfate (SDS) as dispersing agent. The surface morphology of the PVA/SDS/MWNT films was examined by scanning electron microscope (SEM). The SEM analysis of the film samples revealed the uniform appearance in the whole surfaces of the fabricated composite films. However, some roughness on the surface was observed due to the presence of MWNT in the film structure. The PVA/SDS/MWNT films show significant increase in microwave absorption which is improved by increasing the MWNT content. The PVA/SDS/MWNT nanocomposite film sample with MWNT loading of 10 wt% showed the maximum and the relatively high microwave absorption of 28.00 dB at the frequency of 8.6 GHz. 相似文献
13.
目的研究栽培牛蒡田间持水量与光合作用的关系,为牛蒡栽培的水分管理提供理论依据。方法盆栽试验,用CI-340超轻型便携式光合测定仪进行光合参数的测定。结果 70%的田间持水量下牛蒡光合能力最强,在这一条件下,蒸腾速率和水分利用效率也较高。在70%和50%田间持水量条件下,净光合速率日变化均呈明显的双峰曲线,70%田间持水量的峰值出现在中午12时和下午16时,分别为6.3、6.2μmol/m2/s,有轻微的光合"午休"现象。结论栽培牛蒡以控制土壤水分含量为田间持水量的70%最佳。 相似文献
14.
Turmeric (Curcuma longa L.) is an industrially important plant used for production of curcumin, oleoresin and essential oil. In the present study we examined the genetic diversity among turmeric accessions from 10 different agro-climatic regions comprising 5 cultivars and 55 accessions. Two DNA-based molecular marker techniques, viz., random amplified polymorphism DNA (RAPD) and inter simple sequence repeat (ISSR) were used to assess the genetic diversity in turmeric genotypes. A total of 17 polymorphic primers (11 RAPDs and 6 ISSRs) were used in this study. RAPD analysis of 60 genotypes yielded 94 fragments of which 75 were polymorphic with an average of 6.83 polymorphic fragments per primer. Number of amplified fragments with RAPD primers ranged from 3 to 13 with the size of amplicons ranging from 230 to 3000 bp in size. The polymorphism ranged from 45 to 100 with an average of 91.4%. The 6 ISSR primers produced 66 bands across 60 genotypes of which 52 were polymorphic with an average of 8.6 polymorphic fragments per primer. The number of amplified bands varied from 1 to 14 with size of amplicons ranging from 200 to 2000 bp. The percentage of polymorphism using ISSR primers ranged from 83 to 100 with an average of 95.4%. Nei's dendrogram for 60 samples using both RAPD and ISSR markers demonstrated an extent of 62% correlation between the genetic similarity and geographical location. The result of Nei's genetic diversity (H) generated from the POP gene analysis shows relatively low genetic diversity in turmeric accessions of South eastern ghat (P7), Western undulating zone (P8) with 0.181 and 0.199 value whereas highest genetic diversity (0.257) has been observed in Western central table land (P9). Knowledge on the genetic diversity of turmeric from different agro-climatic regions can be used to future breeding programs for increased curcumin, oleoresin and essential oil production to meet the ever-increasing demand of turmeric for industrial and pharmaceutical uses. 相似文献
15.
16.
希金斯刺盘孢(Colletotrichum higginsianum Sacc.)是一种世界性分布的重要植物病原真菌,可引起严重的十字花科植物炭疽病,影响作物品质并造成严重的经济损失。效应分子在植物病原真菌侵染寄主植物过程中发挥着重要的作用。根据已公布的希金斯刺盘孢的全基因组信息,以其全基因组蛋白序列为材料,通过生物信息学方法,对其候选效应分子及其功能进行了预测和分析。首先利用SignalP、TMHMM、Protcomp、big-PI Predictor 和TargetP程序依次预测出其分泌类型的蛋白,再通过其序列大小和半胱氨酸含量作进一步筛选,最后利用blastp工具与非冗余蛋白质数据库进行比对,找出数据库中没有蛋白同源性的序列,从而获得候选效应分子;同时对希金斯刺盘孢全基因组的16 150个蛋白序列进行分析,最终预测到135个符合条件的候选效应分子,而大多数都是功能未知的假定蛋白。本研究采用生物信息学分析方法预测出了希金斯刺盘孢的候选效应分子,为进一步研究这些效应分子的功能奠定了基础,其研究技术和手段也为其它真菌效应分子的预测提供了重要的参考资料。 相似文献
17.
Prediction of paddy field change based on climate change scenarios using the CLUE model 总被引:1,自引:1,他引:0
Yun-Gyeong Oh Seung-Hwan Yoo Sang-Hyun Lee Jin-Yong Choi 《Paddy and Water Environment》2011,9(3):309-323
This study simulated land-cover change using the Conversion of Land Use and its Effects (CLUE) model and predicted future
changes in paddy field area under climate change scenarios A1B, A2, B1, and B2 of the Special Report on Emissions Scenarios
(SRES). The CLUE model is a dynamic spatial land-use simulation model considering competition among land-use types in relation
to socioeconomic and biophysical driving factors. Yongin, Icheon, and Anseong, South Korea, were selected as study areas,
and scenarios were developed for regional-level simulation of land-use change. Binary logistic regressions were also conducted
to evaluate the relationships between land uses and its driving factors. Finally, the simulation results suggested future
changes of paddy field area under the scenario conditions. In all the scenarios, demand for cropland, including paddy and
upland, decreased continuously throughout the simulation period of 2000–2100. The decrease in cropland area was particularly
steep in scenario A2 in 2050. The receiver operating characteristic (ROC) values indicated that the spatial patterns of land-cover
types based on the regressions were reasonably explained by the driving factors. According to the scenarios developed and
location characteristics, in scenario A1B, paddy field areas were mainly transformed into built-up areas, while in the other
scenarios paddy field areas were mainly transformed into forest. The approach used in this study is expected to enable exploration
of future land-use changes under other development constraints and detailed scenarios. 相似文献
18.
Summary The effect of water stress on yielding capacity of potatoes was studied in 3 years using four different levels of soil water
potential (0.7, 1.9, 3.4 and 7.8 atm.) in experiments in specially adapted structures that excluded uncontrolled water supply.
Seed tubers from these crops were planted in the following years to investigate effects of water stress on their subsequent
performance.
Limited soil moisture availability decreased yield and the number and size of tubers. The growing period was shortened by
1–4 weeks and dormancy period by 2–8 weeks. In the following year, seed produced under conditions of moisture stress gave
plants with 20% fewer stems. 24–33% less yield, 18–22% fewer tubers and 19–22% fewer large tubers than plants from seed produced
under abundant water supply. It is concluded that the yield potential of seed tubers can be improved by careful attention
to the availability of soil moisture during their production. 相似文献
19.
Noto Fumikazu Maruyama Toshisuke Yoshida Masashi Hayase Yoshio Takimoto Hiroshi Nakamura Kimihito 《Paddy and Water Environment》2013,11(1-4):463-471
We investigate the effect of climate change on water resources as snow storage (WRSS) using a regional climate model with a 20-km mesh (MRI-RCM20), in the Tedori River basin of Japan. We make four main predictions. First, annual average temperature in Kanazawa is predicted to increase by 2.7 °C by 2081–2100, compared to the period 1981–2000. The smallest predicted temperature difference is 1.1 °C in August, and the largest is 3.4 °C in April and December. The annual average temperature is predicted to change from 14.5 to 17.2 °C. Second, annual average precipitation is predicted to increase by 3.8 %, and precipitation during the snowfall season (December–February) is predicted to decrease by 13.2 %, as a result of increasing temperatures. Third, average WRSS for the period 2001–2100 is predicted by degree-day and tank model analyses. Both the analyses show very similar results. The degree-day analysis shows 200 mm of average WRSS in 2100, and 477 mm in 2050. These values constitute 26 and 63 % of the WRSS value in 2000 (754 mm). The tank model analysis shows WRSS of 260 mm in 2100 and 523 mm in 2050, which are 33 and 67 % of the WRSS (785 mm) in 2000, respectively. Fourth, to examine the effect on irrigation water especially on the paddy paddling period, discharge is predicted and considered under the predicted average WRSS is 520 mm in 2050, 258 mm in 2100, and reaches a minimum of 41 mm in 2100. 相似文献
20.
Z. J. Wang J. H. Wang L. Y. Liu W. J. Huang C. J. Zhao C. Z. Wang 《Field Crops Research》2004,90(2-3):311-321
The applicability of the hyperspectral data from the canopy to the prediction of wheat grain quality was assessed for winter wheat. A training experiment and a validation experiment with contrasting nitrogen (N) levels and different cultivars were conducted, respectively, at different locations in Beijing, China. The wheat canopy spectral reflectance over 350–2500 nm, leaf N concentration and chlorophyll (Chl) concentration were measured at different growth stages, and the grain protein content was also determined after harvest. Eight vegetation indices (VIs) were compared relating to leaf N concentration, and the result indicated that the plant pigment ratio (PPR, (R550−R450)/(R550+R450)), a Chl-based index, was most applicable to predict wheat grain protein due to its significant correlation with leaf N concentration at the post-anthesis stage. Based on the relationships among PPR, leaf Chl concentration, leaf N concentration, and grain protein content, the statistical prediction models of grain protein content for Zhongyou9507 (a hard winter wheat) and Jingdong8 (a semi-hard winter wheat) were developed. The root mean square error (RMSE) of the 18 DAA (days after anthesis) model of Zhongyou9507 was 0.175; those of the anthesis model and the 11 DAA model of Jingdong8 were 0.238 and 0.982, respectively. Taking both the precision and accuracy into account, the 18 DAA model of Zhongyou9507 and the anthesis model of Jingdong8 were recommended to predict grain protein content for each cultivar. The result demonstrated that PPR could be used to assess grain quality of winter wheat. 相似文献