首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyphosate-tolerant, Roundup Ready (RR) soybeans account for about 57% of all genetically modified (GM) crops grown worldwide. The entry of recombinant DNA into soil from GM crops has been identified as an environmental concern due to the possibility of their horizontal transfer to soil microorganisms. RR soybeans contain recombinant gene sequences that can be differentiated from wild-type plant and microbial genes in soil by using a sequence-specific molecular beacon and real-time polymerase chain reaction (PCR). A molecular beacon-based real-time PCR system to quantify a wild-type soybean lectin ( le1) gene was designed to compare amounts of endogenous soybean genes to recombinant DNA in soil. Microcosm studies were carried out to develop methodologies for the detection of recombinant DNA from RR soybeans in soil. RR soybean leaf litterbags were imbedded in the soil under controlled environmental conditions (60% water holding capacity, 10/15 degrees C, and 8/16 h day/night) for 30 days. The soybean biomass decomposition was described using a single-phase exponential equation, and the DNA concentration in planta and in soil was quantified using real-time PCR using sequence-specific molecular beacons for the recombinant cp4 epsps and endogenous soybean lectin ( le1) genes. The biomass of RR soybean leaves was 8.6% less than nontransgenic (NT) soybean leaves after 30 days. The pooled half-disappearance time for cp4 epsps and le1 in RR and of le1 in NT soybean leaves was 1.4 days. All genes from leaves were detected in soil after 30 days. This study provides a methodology for monitoring the entry of RR and NT soybean DNA into soil from decomposing plant residues.  相似文献   

2.
A method for quantification of recombinant DNA for Roundup Ready (RR) corn and RR soybean in soil samples is described. Soil DNA from experimental field samples was extracted using a soil DNA extraction kit with a modified protocol. For the detection and quantification of recombinant DNA of RR corn and RR soybean, a molecular beacon and two pairs of specific primers were designed to differentially target recombinant DNA in these two genetically modified crops. Soil DNA extracts were spiked with RR corn or RR soybean DNA, and recombinant DNA was quantified using real-time PCR with a molecular beacon. As few as one copy of RR corn genome or one copy of RR soybean genome was detected in the soil DNA extract.  相似文献   

3.
Roundup Ready (RR) genetically modified (GM) corn and soybean comprise a large portion of the annual planted acreage of GM crops. Plant growth and subsequent plant decomposition introduce the recombinant DNA (rDNA) into the soil environment, where its fate has not been completely researched. Little is known of the temporal and spatial distribution of plant-derived rDNA in the soil environment and in situ transport of plant DNA by leachate water has not been studied before. The objectives of this study were to determine whether sufficient quantities of plant rDNA were released by roots during growth and early decomposition to be detected in water collected after percolating through a soil profile and to determine the influence of temperature on DNA persistence in the leachate water. Individual plants of RR corn and RR soybean were grown in modified cylinders in a growth room, and the cylinders were flushed with rain water weekly. Immediately after collection, the leachate was subjected to DNA purification followed by rDNA quantification using real-time Polymerase Chain Reaction (PCR) analysis. To test the effects of temperature on plant DNA persistence in leachate water, water samples were spiked with known quantities of RR soybean or RR corn genomic DNA and DNA persistence was examined at 5, 15, and 25 degrees C. Differences in the amounts and temporal distributions of root-derived rDNA were observed between corn and soybean plants. The results suggest that rainfall events may distribute plant DNA throughout the soil and into leachate water. Half-lives of plant DNA in leachate water ranged from 1.2 to 26.7 h, and persistence was greater at colder temperatures (5 and 15 degrees C).  相似文献   

4.
Developments in biotechnology and molecular-assisted breeding have led to the development of a second-generation glyphosate-tolerant soybean product, MON 89788. The MON 89788 event was produced by direct transformation of a cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene cassette derived from Agrobacterium sp. strain CP4 into an elite soybean germplasm known for its superior agronomic characteristics and high yielding property. The purpose of this work was to assess whether the nutrient and antinutrient levels in seed and forage tissues of MON 89788 are comparable to those in the conventional soybean variety, A3244, which has background genetics similar to MON 89788 but does not contain the cp4 epsps gene cassette. Additional conventional soybean varieties currently in the marketplace were also included in the analysis to establish a range of natural variability for each analyte, where the range of variability is defined by a 99% tolerance interval for that particular analyte. Compositional analyses were conducted on forage, seed and four processed fractions from soybeans grown in ten sites across both the United States and Argentina during the 2004-2005 growing seasons. Forage samples were analyzed for levels of proximates (ash, fat, moisture, and protein) and fiber. Seed samples were analyzed for proximates, fiber, antinutrients, and vitamin E. Defatted, toasted (DT) meal was analyzed for proximates, fiber, amino acids, and antinutrients. Refined, bleached, and deodorized (RBD) oil was analyzed for fatty acids and vitamin E. Protein isolate was analyzed for amino acids and moisture. Crude Lecithin was analyzed for phosphatides. Results of the comparisons indicate that MON 89788 is compositionally and nutritionally equivalent to conventional soybean varieties currently in commerce.  相似文献   

5.
The persistence of plant-derived recombinant DNA in sheep and pigs fed genetically modified (Roundup Ready) canola was assessed by PCR and Southern hybridization analysis of DNA extracted from digesta, gastrointestinal (GI) tract tissues, and visceral organs. Sheep (n = 11) and pigs (n = 36) were fed to slaughter on diets containing 6.5 or 15% Roundup Ready canola. Native plant DNA (high- and low-copy-number gene fragments) and the cp4 epsps transgene that encodes 5-enolpyruvyl shikimate-3-phosphate synthase were tracked in ruminal, abomasal, and large intestinal digesta and in tissue from the esophagus, rumen, abomasum, small and large intestine, liver, and kidney of sheep and in cecal content and tissue from the duodenum, cecum, liver, spleen, and kidney of pigs. High-copy chloroplast-specific DNA (a 520-bp fragment) was detected in all digesta samples, the majority (89-100%) of intestinal tissues, and at least one of each visceral organ sample (frequencies of 3-27%) from sheep and swine. Low-copy rubisco fragments (186- and 540-bp sequences from the small subunit) were present at slightly lower, variable frequencies in digesta (18-82%) and intestinal tissues (9-27% of ovine and 17-25% of porcine samples) and infrequently in visceral organs (1 of 88 ovine samples; 3 of 216 porcine samples). Each of the five cp4 epsps transgene fragments (179-527 bp) surveyed was present in at least 27% of ovine large intestinal content samples (maximum = 64%) and at least 33% of porcine cecal content samples (maximum = 75%). In sheep, transgene fragments were more common in intestinal digesta than in ruminal or abomasal content. Transgene fragments were detected in 0 (esophagus) to 3 (large intestine) GI tract tissues from the 11 sheep and in 0-10 of the duodenal and cecal tissues collected from 36 pigs. The feed-ingested recombinant DNA was not detected in visceral tissues (liver, kidney) of lambs or in the spleen from pigs. Of note, however, one liver and one kidney sample from the pigs (different animals) were positive for a 278-bp fragment of the transgenic cp4 epsps (denoted F3). Examination of genomic libraries from these tissues yielded no conclusive information regarding integration of the fragment into porcine DNA. This study confirms that feed-ingested DNA fragments (endogenous and transgenic) do survive to the terminal GI tract and that uptake into gut epithelial tissues does occur. A very low frequency of transmittance to visceral tissue was confirmed in pigs, but not in sheep. It is recognized that the low copy number of transgenes in GM feeds is a challenge to their detection in tissues, but there was no evidence to suggest that recombinant DNA would be processed in the gut in any manner different from endogenous feed-ingested genetic material.  相似文献   

6.
The soybean product MON 87701 × MON 89788 expresses both the cry1Ac gene derived from Bacillus thuringiensis and the cp4 epsps (5-enolpyruvylshikimate-3-phosphate synthase) gene derived from Agrobacterium sp. strain CP4. Each biotechnology-derived trait confers specific benefits of insect resistance and glyphosate tolerance, respectively. The purpose of this study was to compare the composition of seed and forage from this combined-trait product to those of conventional soybean grown in geographically and climatically distinct regions. Field trials were conducted in the United States during the 2007 growing season, in Argentina during the 2007-2008 growing season, and in the northern and southern soybean regions of Brazil during the 2007-2008 and 2008-2009 growing seasons. Results demonstrated that the compositional equivalence of MON 87701 × MON 89788 to the conventional soybean extended across all regions and growing seasons. Further evaluation of the data showed that natural variation (region and growing season) contributed more to compositional variability in soybean, particularly for such components as isoflavones, fatty acids, and vitamin E, than transgene insertion.  相似文献   

7.
The aim was to determine the fate of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. Male broiler chicks (n = 24) were allocated at 1 day old to each of four treatment diets designated T1-T4. T1 and T2 contained the near isogenic nongenetically modified (GM) maize grain, whereas T3 and T4 contained GM maize grain [cry1a(b) gene]; T1 and T3 also contained the near isogenic non-GM soybean meal, whereas T2 and T4 contained GM soybean meal (cp4epsps gene). Four days prior to slaughter at 39-42 days old, 50% of the broilers on T2-T4 had the source(s) of GM ingredients replaced by their non-GM counterparts. Detection of specific DNA sequences in feed, tissue, and digesta samples was completed by polymerase chain reaction analysis. Seven primer pairs were used to amplify fragments ( approximately 200 bp) from single copy genes (maize high mobility protein, soya lectin, and transgenes in the GM feeds) and multicopy genes (poultry mitochondrial cytochrome b, maize, and soya rubisco). There was no effect of treatment on the measured growth performance parameters. Except for a single detection of lectin (nontransgenic single copy gene; unsubstantiated) in the extracted DNA from one bursa tissue sample, there was no positive detection of any endogenous or transgenic single copy genes in either blood or tissue DNA samples. However, the multicopy rubisco gene was detected in a proportion of samples from all tissue types (23% of total across all tissues studied) and in low numbers in blood. Feed-derived DNA was found to survive complete degradation up to the large intestine. Transgenic DNA was detected in gizzard digesta but not in intestinal digesta 96 h after the last feeding of treatment diets containing a source of GM maize and/or soybean meal.  相似文献   

8.
Depending upon how soil is managed, it can serve as a source or sink for atmospheric carbon dioxide (CO2). As the atmospheric CO2 concentration continues to increase, more attention is being focused on the soil as a possible sink for atmospheric CO2. This study was conducted to examine the short-term effects of crop rotation and N fertilization on soil CO2 emissions in Central Iowa. Soil CO2 emissions were measured during the growing seasons of 2003 and 2004 from plots fertilized with three N rates (0, 135, and 270 kg N ha−1) in continuous corn and a corn–soybean rotation in a split-plot design. Soil samples were collected in the spring of 2004 from the 0–15 cm soil depth to determine soil organic C content. Crop residue input was estimated using a harvest index based on the measured crop yield. The results show that increasing N fertilization generally decreased soil CO2 emissions and the continuous corn cropping system had higher soil CO2 emissions than the corn–soybean rotation. Soil CO2 emission rate at the peak time during the growing season and cumulative CO2 under continuous corn increased by 24 and 18%, respectively compared to that from corn–soybean rotation. During this period, the soil fertilized with 270 kg N ha−1 emitted, on average, 23% less CO2 than the soil fertilized with the other two N rates. The greatest difference in CO2 emission rate was observed in 2004; where plots that received 0 N rate had 31% greater CO2 emission rate than plots fertilized with 270 kg N ha−1. The findings of this research indicate that changes in cropping systems can have immediate impact on both rate and cumulative soil CO2 emissions, where continuous corn caused greater soil CO2 emissions than corn soybean rotation.  相似文献   

9.
免耕对黑土春夏季节温度和水分的影响   总被引:21,自引:3,他引:21  
通过田间定位试验,研究免耕与常规耕作对东北黑土区玉米和大豆生长早期土壤温度和水分的影响。研究结果表明:播种前,由于免耕与常规耕作(秋翻)覆盖率和含水量不同,免耕处理的玉米和大豆小区土壤的白天5cm地温均低于常规耕作处理,夜间差异不大;相同深度的玉米和大豆秋翻处理土壤日平均温度分别比免耕高0. 7℃和0. 5℃;随土壤深度的增加,土壤温度的差异逐渐减小。播种后,除了下午免耕5cm地温略低于秋翻外,下午至夜间免耕的10cm和15cm地温,均略高于秋翻的土壤温度。这是由于免耕下土壤水分增高引起的土壤热容量加大,从而缓解夜间降温和寒流影响,减缓土壤温度下降的结果。播种前,免耕处理的玉米和大豆地土壤水分分别比秋翻处理高2. 4%和1. 8%。播种后的一个月期间,免耕大豆土壤含水量比秋翻高2. 3%。初步的研究结果表明,免耕可以在一定程度上缓解春季黑土墒情不好的问题,这对保证出苗和幼苗的健康生长非常重要。  相似文献   

10.
Recent research has indicated that conservation systems with narrow-rows have potential for higher crop productivity on southeastern USA Coastal Plains Soil. The objective of this study was to determine how surface tillage and subsoiling affect nutrient distribution in the soil profile in narrow- and wide-row systems. A secondary objective was to determine the effect of row position on soil pH and nutrient concentrations in the wide-row system. Soil samples were collected in 1996 from plots that had been growing soybean (Glycine max (L.) Merr.) double cropped with wheat (Tritiucum aestivum L.) for 3 years and then again in 1999 after 3 years of continuous corn (Zea mays L.). Narrow-row spacing was 19 cm for soybean and 38 cm for corn. Wide-row spacing was 76 cm for both soybean and corn. Wheat was grown in 19 cm wide-rows. Soil samples were randomly collected from throughout the plots in the narrow-row culture. In the wide-row culture, separate samples were collected from the row and from between rows. Treatments were surface tillage (disc tillage (DT) and no surface tillage (NT)), with different frequencies of subsoiling. The soil type was Goldsboro loamy sand (fine-loamy, siliceous, thermic, Aquic Kandiudult). Soil samples from four depths (the surface 5 cm of the A horizon, the remainder of the A horizon, the E horizon, and the top 7.5 cm of the B horizon) were analyzed for pH, P, K, Ca, and Mg. Nutrient concentrations and pH differed little between row spacings at any depth after either 3 or 6 years. Differences due to subsoiling appeared mainly due to nutrient removal as the treatments with more intense subsoiling had higher yield and lower concentrations of nutrients (except K). Concentrations of P, Mg, and Ca at the soil surface tended to be higher in NT than in DT, especially in the mid-rows of the 76 cm wide-row systems. The data suggest only small differences in soil nutrient stratification can be expected as growers adopt narrow-row crop production systems with intensive subsoiling.  相似文献   

11.
Quantifying the amount of carbon (C) incorporated from decomposing residues into soil organic carbon (CS) requires knowing the rate of C stabilization (humification rate) into different soil organic matter pools. However, the differential humification rates of C derived from belowground and aboveground biomass into CS pools has been poorly quantified. We estimated the contribution of aboveground and belowground biomass to the formation of CS in four agricultural treatments by measuring changes in δ13C natural abundance in particulate organic matter (CPOM) associated with manipulations of C3 and C4 biomass. The treatments were (1) continuous corn cropping (C4 plant), (2) continuous soybean cropping (C3), and two stubble exchange treatments (3 and 4) where the aboveground biomass left after the grain harvest was exchanged between corn and soybean plots, allowing the separation of aboveground and belowground C inputs to CS based on the different δ13C signatures. After two growing seasons, CPOM was primarily derived from belowground C inputs, even though they represented only ∼10% of the total plant C inputs as residues. Belowground biomass contributed from 60% to almost 80% of the total new C present in the CPOM in the top 10 cm of soil. The humification rate of belowground C inputs into CPOM was 24% and 10%, while that of aboveground C inputs was only 0.5% and 1.0% for soybean and corn, respectively. Our results indicate that roots can play a disproportionately important role in the CPOM budget in soils. Keywords Particulate organic matter; root carbon inputs; carbon isotopes; humification rate; corn; soybean.  相似文献   

12.
Environmental conditions in the northern Great Plains can delay emergence, nitrogen (N) fixation and growth of soybean due to cool and wet soil conditions at planting. The objective was to evaluate the impact of low rates of N applied at planting on soybean N fixation and crop growth. A field experiment was established within corn soybean rotation using a split-plot design with four replications. Whole plots were no-tillage and conventional tillage and split plots were starter fertilizer. Nitrogen sources were ammonium nitrate or urea applied at four rates. The amount of plant N fixation increased with growth stage reaching a maximum fixation at the R5 growth stages. Plant ureide content decrease with increase N applied for all growth stages except R7. The increase in plant biomass contributed to an overall increase in yield indicating that in unfavorable environments application of N at planting can have a positive impact on soybean growth.  相似文献   

13.
《Applied soil ecology》2008,38(3):256-266
Dynamics of soil bulk density, organic matter, microbial biomass, nitrogen, and nematode communities were assessed for a period of 4 years in field plots transitioning from conventional to organic farming practices. A rotation of soybeans, corn, oats and hay was used as an organic transitioning strategy and the conventional farming system had a corn and soybean rotation for comparison. Organic corn received raw straw pack beef manure and poultry compost at the rate of 27 and 28 Mg/h, respectively, and organic oats received raw straw pack beef manure and poultry compost at the rate of 18 and 1.8 Mg/h, respectively, while conventional plots received synthetic fertilizers. All crops in the organic system received primary tillage (chisel plow, disked and tined) whereas only corn received primary tillage in the conventional system but soybeans were no-till. Weed control was mechanical (twice diskings, rotary hoeings and row cultivation) in the organic system whereas herbicides were used in the conventional system. Soil bulk density did not differ in the two systems over a 4-year period but organic farming had slightly higher organic matter, mineral associated organic matter and particulate organic matter. Conventional system had more N in the mineral pools as indicated by higher NO3-N whereas organic system had higher N in the microbial biomass indicating shifts in nitrogen pools between the two systems. Bacterivore nematodes were more abundant in the organic than the conventional system for most of the study period. In contrast, the conventional system had significantly higher populations of the root lesion nematode, Pratylenchus crenatus, than the organic system after completion of the rotation cycle (transition period) in spring 2004. The organic hay plots had the lowest populations of P. crenatus compared to corn, soybeans and oats. Nematode faunal profile estimates showed that the food webs were highly enriched and moderately to highly structured and the decomposition channels were bacterial in both systems. The lack of differences in structure index between the organic and conventional systems is probably due to the excessive tillage in the organic farming system, which may have prevented the build up of tillage-sensitive omnivorous and predatory nematodes that contribute to the structure index. We conclude that transition from conventional to organic farming can increase soil microbial biomass-N and populations of beneficial bacterivore nematodes while simultaneously reducing the populations of predominant plant-parasitic nematode, P. crenatus. Our findings also underscore the potential benefits of reducing tillage for the development of a more mature soil food web.  相似文献   

14.
Abstract

Soils of the Argentine humid pampa region are usually weakly structured due to its high silt content. Selecting crop sequence or tillage systems are an alternative in small farms for the protection of the soil against physical degradation and erosion given that conservation practices, grass meadows, and fertilizers are expensive and therefore rarely used. Evaluation of selected soil properties was conducted on soil sampled from a long‐term tillage experiment with continuous soybean established in 1975 on a Typic Argiudoll silty loam soil in Argentina. Tillage treatments included conventional tillage with moldboard plow (CT), chisel plow (CP), and no till (NT). A comparison with continuous corn under NT was also carried out. Sampling was performed after the emergence of both crops in 1990. Tillage and cropping treatments affected properties related to soil slacking and dispersion to a greater extent than they did on aggregate size distribution. According to the De Leenheer and De Boodt index, aggregate stability within soybean soil classified as bad for CT, unsatisfactory for CP, and very good for NT, whereas the soil with corn under NT classified as excellent. The no tillage treatment within soybean had significantly more organic carbon in the 0–5 cm depth than CP or CT. Soil respiration was significantly higher in NT than in CT in the surface layer, while CT showed higher values in the 10–15 cm depth. Tillage treatments did not significantly affect microbial biomass under soybean cropping. The effect of monoculture corn versus monoculture soybean under NT on soil respiration, biomass and organic carbon was not significant. Soil pH in the 0–5 cm depth under soybean was in the order NT > CP > CT, whereas the soil with corn under NT was more acid than the soybean soil (P=0.05). Cation exchange capacity and exchangeable bases followed a similar trend. Organic carbon (0–5 cm depth) and aggregate stability were significantly correlated when samples from all treatments were considered.  相似文献   

15.
Abstract

Soil organic matter and its chemical fractions have a profound impact on soil chemical and physical properties. In turn, the effect of management (cropping and tillage) on the quantity and chemical properties of soil organic matter can be substantial. The objective of this study was to compare the effects of specific tillage regimes and crop sequences commonly used in the central Great Plains of the United States on the quantity, quality, and distribution with depth of soil organic carbon (SOC). Soils were sampled in 1 cm or 2 cm increments to a depth of 10 cm from experimental field plots on a Sharpsburg silty clay loam (fine, montmorillonitic, mesic Typic Argiudoll). The plots had been under 6 continuous tillage regimes since 1978 and cropped to continuous corn, continuous soybean, or corn‐soybean in rotation since 1985. Soils were analyzed for total SOC, fulvic acid (FA) carbon, and humic acid (HA) carbon. No‐till and continuous corn (Zea mays L.) management generally had the highest SOC, with a sharp reduction in SOC below 2 cm. Only no‐till increased FA, which also decreased with depth, especially between 2 and 4 cm. Humic acid concentration was highest under continuous corn but was unaffected by tillage. Humic acid also was highest in the 1‐ to 2‐cm increment of continuous corn. Two ratios which are used as indices of degree of humification, HA/FA and (HA+FA)/SOC, gave different estimates of the effect of management. Only continuous com increased HA/FA, suggesting increased humification. No treatment affected (HA+FA)/SOC. Overall, continuous corn and no‐till contributed the greatest amounts of residue and maintained a soil environment conducive to preserving the resulting organic matter. These management options increase not only total SOC, but also alter the quality of that SOC as measured by HA and FA. These changes in SOC characteristics may have implications for long‐term soil quality and soil productivity.  相似文献   

16.
Accumulated soil P in agricultural soils is a major source of soluble and particulate forms of P entering water resources and degrading water quality. However, few research sites are currently available to evaluate the long-term effects of different cropping systems and fertility practices on soil inorganic and organic P accumulation. The objectives of this study were: (1) to compare the forms and quantity of different inorganic and organic soil P fractions in plots on Sanborn Field, which has been cultivated for 111 years; and (2) to assess the use of standard soil test P extractants for determining changes in soil P dynamics over time. A modified sequential P extraction procedure was used to separate labile and stable inorganic and organic P pools from surface soils collected on Sanborn Field in 1915, 1938, 1962, and 1999 from plots in continuous corn, continuous wheat, continuous timothy, and a corn-wheat-clover rotation amended with either manufactured fertilizers, horse or dairy manure or receiving no fertilization since 1888. Additional samples were collected from a native grass prairie site of a similar soil series to estimate soil characteristics at Sanborn Field before initial cultivation in 1888. Observed accumulation of Bray-1 P among fertilizer and manure treatments was attributed to over-application of P due to unrealistically high yield goals for each cropping system. Long-term cultivation of Sanborn Field increased soil bulk density and lowered soil pH and total organic C compared with native prairie. Fertilization either by addition of manufactured fertilizer or manure significantly increased inorganic resin-P and inorganic NaOH-extractable P. Applications of animal manure also significantly increased most organic P fractions compared with the unfertilized treatment. The native prairie had a larger proportion of total P in organic forms compared with cultivated plots, especially in organic NaOH-extractable P, but no significant decreases in either residual or total P were observed due to cultivation. This study confirms that soil P availability in cropping systems that are amended with predominantly organic P amendments may differ from conventional cropping systems relying on manufactured P fertilizers. However, no direct evidence was found to support the hypothesis that any individual inorganic or organic soil P fraction has a better relationship than conventional soil test P extractants with plant P uptake under contrasting organic and conventional fertility practices.  相似文献   

17.
Perennial biofuel crops such as Miscanthus and switchgrass are thought to increase soil organic matter and therefore may increase soil nitrogen (N) mineralization rates. Our objective was to evaluate a range of N-mineralization indices for soils with established biofuel crops and compare these results with soils in a traditional corn and soybean rotation. We sampled surface soil (0–10 cm deep) from switchgrass (6 years after establishment) and Miscanthus plots (5 years) in a high-organic-matter Mollisol. The longest potential N mineralization index, a 24-day incubation, was significantly greater in Miscanthus soils compared to switchgrass and corn–soybean. In addition, 7-day anaerobic N and potassium chloride–extractable ammonium N were both greater in Miscanthus soils compared to switchgrass and corn–soybean. Our results do support our hypothesis that N-mineralization rates are greater in soils under biofuel production.  相似文献   

18.
Crop rotation adoption in no‐tillage systems (NTS) has been recommended to increase the biological activity and soil aggregation, suppress soil and plant pathogens, and increase the productivity aiming at the sustainability of agricultural areas. In this context, this study aimed to assess the effect of crop rotation on the arbuscular mycorrhizal fungi (AMF) community and soil aggregation in a soil cultivated for nine years under NTS. Treatments consisted of combinations of three summer crop sequences and seven winter crops. Summer crop sequences consisted of corn (Zea mays L.) monoculture, soybean (Glycine max L. Merrill) monoculture, and soybean–corn rotation. Winter crops consisted of corn, sorghum (Sorghum bicolor (L.) Moench), sunflower (Helianthus annuus L.), sunn hemp (Crotalaria juncea L.), pigeon pea (Cajanus cajan (L.) Millsp.), oilseed radish (Raphanus sativus L.), and millet (Pennisetum americanum (L.) Leeke). Soil samples were collected at a depth of 0–0.10 m for analyses of soil chemical, physical, and biological attributes. Spore abundance, total glomalin, and soil aggregate stability index were higher in the soil under corn monoculture. The highest values of aggregate mean weight diameter were observed in the soybean–corn rotation (3.78 mm) and corn monoculture (3.70 mm), both differing from soybean monoculture (3.15 mm), while winter crops showed significant differences only between sorghum (3.96 mm) and pigeon pea (3.25 mm). Two processes were identified in the soil under summer crop sequences. The first process was observed in PC1 (spore abundance, total glomalin, easily extractable glomalin, pH, P, and Mg2+) and was related to AMF; the second process occurred in PC2 (aggregate mean weight diameter, soil aggregate stability index, K+, and organic matter) and was related to soil aggregation. The nine‐year no‐tillage system under the same crop rotation adoption influenced AMF abundance in the soil, especially with corn cultivation in the summer crop sequence, which promoted an increased total external mycelium length and number of spores of AMF. In addition, it favored an increased soil organic matter content, which is directly related to the formation and stability of soil aggregates in these managements.  相似文献   

19.
Winter cover crops increase the amount of indigenous arbuscular mycorrhizal fungi (AMF) in the soil, providing beneficial effects such as enhancement of phosphorus uptake by the subsequent crop. However, its impact on the AMF community structure is not well understood. In the present study, we aimed to reveal the effect of winter wheat cover cropping with no-till cultivation on the AMF community structures in soil and roots of the subsequent soybean. For this purpose, we conducted a field experiment consisting of two treatments, no-till soybean cultivation after winter wheat cover cropping (NTWC) and conventional soybean cultivation after winter fallow management as a control (CONT). At the flowering stage of soybean, higher AMF colonization of soybean roots was observed in the NTWC plots compared with the CONT plots. Additionally, aboveground biomass and phosphorus uptake of soybean in the NTWC plots were significantly higher than those in the CONT plots. Molecular community analyses based on PCR-denaturing gradient gel electrophoresis (DGGE) of AMF 18S rRNA genes indicated that the AMF community structures in the soil and soybean root of the NTWC plots were clearly different from those of the CONT plots. The DGGE profiles showed that the wheat cover cropping preferentially increased some phylotypes belonging to Glomeraceae and Claroideoglomeraceae. In addition, most of the phylotypes were characteristically observed in the subsequent soybean root of the NTWC plots, strongly suggesting that these phylotypes colonizing the cover crop wheat were taken over by the subsequent soybean. Our study revealed the significant effect of winter cover cropping with no-till cultivation on the structure of AMF community colonizing the subsequent soybean.  相似文献   

20.
为定量研究水动力对土壤分离速率的影响,采用变坡实验水槽方法,在特定水动力条件下,分析黄土高原七种典型土地利用类型土壤分离速率的季节变化。结果表明:(1)不同土地利用下土壤分离速率差异显著,测定期内平均值为谷子土豆玉米大豆荒坡草地林地;(2)除林地外,各土地利用类型土壤分离速率具有明显的季节变化,变化幅度为玉米谷子大豆荒坡土豆草地林地;(3)农地土壤分离速率的季节变化主要由农事活动导致,播种、除草、收获等农事活动可使土壤分离速率提高2~6倍;(4)土壤表层粘结力对各类土地利用土壤分离速率的季节变化具有重要影响。研究结果为进一步分析土壤侵蚀过程和建立侵蚀模型提供了一定的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号