首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

The aim of this study was to investigate the impacts of elevated carbon dioxide (CO2) and temperature on the establishment, growth and mortality of the branches of Scots pine (Pinus sylvestris L). In 1997, 16 young trees were individually enclosed in chambers, in eastern Finland, for a period of 5 years (1997–2001), in an environment that simulated the future climate for the region. There were four replicates of each treatment, including combinations of ambient and elevated CO2 and temperature. Measurements were carried out on the establishment of new branches, branch diameter growth and branch mortality. Elevated temperature and elevated CO2 had no positive effect on the number of branches that established each year or branch diameter growth. They were, instead, related to tree height growth and stem diameter growth, respectively. However, elevated CO2 and temperature caused an increase in branch mortality.  相似文献   

2.
Growth and wood properties of 20-year-old Scots pine (Pinus sylvestris L.) trees were studied for 6 years in 16 closed chambers providing a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations ([CO2]) (ambient and twice ambient). The elevation of temperature corresponded to the predicted effect at the site of a doubling in atmospheric [CO2]. Annual height and radial growth and wood properties were analyzed during 1997-2002. Physical wood properties analyzed included early- and latewood widths and their proportions, intra-ring wood densities, early- and latewood density and mean fiber length. Chemical wood properties analyzed included concentrations of acetone-soluble extractives, lignin, cellulose and hemicellulose. There were no significant treatment effects on height growth during the 6-year study. Elevated [CO2] increased ring width by 66 and 47% at ambient and elevated temperatures, respectively. At ambient [CO2], elevated temperature increased ring width by 19%. Increased ring width in response to elevated [CO2] resulted from increases in both early- and latewood width; however, there was no effect of the treatments on early- and latewood proportions. Mean wood density, earlywood density and fiber length increased in response to elevated temperature. The chemical composition of wood was affected by elevated [CO2], which reduced the cellulose concentration, and by elevated temperature, which reduced the concentration of acetone-soluble extractives. Thus, over the 6-year period, radial growth was significantly increased by elevated [CO2], and some wood properties were significantly affected by elevated temperature or elevated [CO2], or both, indicating that climate change may affect the material properties of wood.  相似文献   

3.
Naturally regenerated 20-25-year-old Scots pine (Pinus sylvestris L.) trees were grown in open-top chambers in the presence of an elevated temperature or CO(2) concentration, or both. The elevated temperature treatment was administered year-round for 3 years. The CO(2) treatment was applied between April 15 and September 15 for 2 years. The photosynthetic responses of 1- and 2-year-old needles to varying photon flux densities (0-1500 micro mol m(-2) s(-1)) and CO(2) concentrations (350, 700 and 1400 micro mol mol(-1)) during measurement were determined. The CO(2) treatment alone increased maximum photosynthetic rate and light-use efficiency, but decreased dark respiration rate, light compensation and light saturation regardless of needle age. In contrast, the temperature treatment decreased maximum photosynthetic rate and photosynthetic efficiency, but increased dark respiration rate, light compensation and light saturation. The aging of needles affected the photosynthetic performance of the shoots; values of all parameters except photosynthetic efficiency were less in 2- than in 1-year-old needles. The CO(2) treatment decreased and the temperature treatment enhanced the reduction in maximum photosynthesis due to needle aging.  相似文献   

4.
We investigated the impacts of elevated temperature and carbon dioxide concentration ([CO2]) on diameter growth of Scots pine (Pinus sylvestris L.), aged about 20 years, grown with a low nitrogen supply in closed chambers at (i) ambient temperature and [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC), and (iv). elevated temperature and [CO2] (ET+EC). Each treatment was replicated four times. Diameter growth was monitored with a band dendrograph at 15-min intervals throughout the growing seasons of 1997, 1998 and 1999. Over the monitoring period, diameter growth began 2-3 weeks earlier in trees in the ET+EC and ET+AC chambers than in trees in the AT+AC and AT+EC chambers. However, the cessation of growth occurred about a week later in trees in the ET+EC, ET+AC and AT+EC chambers compared with the AT+AC chambers. The duration of the growing season was 115 and 108 days in the ET+EC and ET+AC chambers, respectively, and 95 and 84 days in the AT+EC and AT+AC chambers, respectively. The ET+AC and ET+EC treatments enhanced diameter growth most early in the growing season, whereas in trees in the AT+AC and AT+EC treatments diameter growth rate was highest in the middle of the growing season. Diameter growth rate leveled off more slowly in trees in the ET+EC and AT+EC treatments than in the other treatments. The growth response to elevated T, elevated [CO2] or both decreased with time and it was less than the maximum observed in other studies for small seedlings and under optimal growth conditions. Nevertheless, cumulative diameter growth for the 3-year period was 67% greater in trees in the ET+EC treatment, and 57 and 26% greater in trees in the AT+EC and ET+AC treatments, respectively, compared with trees in the AT+AC treatment. Over the 3 years, [CO2] had a statistically significant (P < 0.10) effect on both absolute and relative diameter growth, but the interaction between [CO2] and temperature was not significant.  相似文献   

5.
Single Scots pines (Pinus sylvestris L.), aged 20–25 years, were grown in open-top chambers and exposed to elevated temperature (Elev. T), elevated CO2 (Elev. C) and a combination of elevated CO2 and temperature (Elev. C + T) for 4 years. The vertical distribution of needle nitrogen concentration was measured simultaneously with gas exchange of attached shoots. Based on the measurements, the dependencies on needle nitrogen concentrations of four photosynthetic parameters, i.e., RuP2 (ribulose 1,5-bisphosphate)-saturated rate of carboxylation (Vcmax), maximum potential electron transport (Jmax), the rate of respiration in the light (Rd) and light-use-efficiency factor (δ), were determined. Using a crown multilayer model, the performance of daily crown photosynthesis in Scots pine was predicted. Compared to the control treatment, the mean concentration of nitrogen in the foliage decreased by 20% and by 17% for trees grown under Elev. C and under Elev. C + T, respectively, but increased by 4% for trees grown under Elev. T. However, the total content of foliage nitrogen per unit ground area increased by 25% for trees grown under Elev. C, by 19% for trees grown under Elev. C + T and by 6% for trees grown under Elev. T; these were due to the increase in the total needle area index. Regressions showed that the foliage grown under Elev. C and Elev. C + T had steeper slopes representing the responses of Vcmax, Rd and δ to leaf nitrogen concentrations, while Elev. C + T and Elev. T had steeper slopes representing the response of Jmax to needle nitrogen concentrations. Predictions showed that, on a typical sunny day, the daily total of crown photosynthesis increased 22% and 27%, separately for Elev. C and Elev. C + T, and by only 9% for Elev. T alone. Furthermore, the increased daily crown photosynthesis, resulting from treatments involving elevated CO2, can be attributed mainly to an increase in the ambient CO2 concentration and the needle area index, while modification of the intrinsic photosynthetic capacity had only a marginal effect. Based on the current pattern of crown nitrogen allocation, the prediction showed also that the relationship between daily crown photosynthesis and crown nitrogen content was strongly dependent on the daily incident PAR and air temperature. The CO2-elevated treatments led to an increase in the sensitivity of daily crown photosynthesis to changes in crown nitrogen content, daily incident PAR and temperature, while the temperature-elevated treatment had the opposite effect on the sensitivity.  相似文献   

6.
本文介绍了樟子松叶枯病病症的观察和病原菌的分离培养过程,对病原菌的形态、培养特性等进行了初步研究,经鉴定樟子松叶枯病病原子囊菌亚门、盘菌纲、星裂盘菌目、斑痣盘菌科、小散斑诉Lophodermellasalcigena种。  相似文献   

7.
Impacts of elevated temperature and carbon dioxide concentration ([CO2]) on wood properties of 15-year-old Scots pines (Pinus sylvestris L.) grown under conditions of low nitrogen supply were investigated in open-top chambers. The treatments consisted of (i) ambient temperature and ambient [CO2] (AT+AC), (ii) ambient temperature and elevated [CO2] (AT+EC), (iii) elevated temperature and ambient [CO2] (ET+AC) and (iv) elevated temperature and elevated [CO2] (ET+EC). Wood properties analyzed for the years 1992-1994 included ring width, early- and latewood width and their proportions, intra-ring wood density (minimum, maximum and mean, as well as early- and latewood densities), mean fiber length and chemical composition of the wood (cellulose, hemicellulose, lignin and acetone extractive concentration). Absolute radial growth over the 3-year period was 54% greater in AT+EC trees and 30 and 25% greater in ET+AC and ET+EC trees, respectively, than in AT+AC trees. Neither elevated temperature nor elevated [CO2] had a statistically significant effect on ring width, early- and latewood widths or their proportions. Both latewood density and maximum intra-ring density were increased by elevated [CO2], whereas fiber length was increased by elevated temperature. Hemicellulose concentration decreased and lignin concentration increased significantly in response to elevated temperature. There were no statistically significant interaction effects of elevated temperature and elevated [CO2] on the wood properties, except on earlywood density.  相似文献   

8.
We studied the effects of elevated temperature and carbon dioxide concentration ([CO(2)]) alone and together on wood anatomy of 20-year-old Scots pine (Pinus sylvestris L.) trees. The study was conducted in 16 closed chambers, providing a factorial combination of two temperature regimes and two CO(2) concentrations (ambient and elevated), with four trees in each treatment. The climate scenario included a doubling of [CO(2)] and a corresponding increase of 2-6 degrees C in temperature at the site depending on the season. Anatomical characteristics analyzed were annual earlywood, latewood and ring widths, intra-ring wood densities (earlywood, latewood and mean wood density), tracheid width, length, wall thickness, lumen diameter, wall thickness:lumen diameter ratio and mass per unit length (coarseness), and numbers of rays, resin canals and tracheids per xylem cross-sectional area. Elevated [CO(2)] increased ring width in four of six treatment years; earlywood width increased in the first two years and latewood width in the third year. Tracheid walls in both the earlywood and latewood tended to become thicker over the 6-year treatment period when temperature or [CO(2)] was elevated alone, whereas in the combined treatment they tended to become thinner relative to the tracheids of trees grown under ambient conditions. Latewood tracheid lumen diameters were larger in all the treatments relative to ambient conditions over the 6-year period, whereas lumen diameters in earlywood increased only in response to elevated [CO(2)] and were 3-6% smaller in the treatments with elevated temperature than in ambient conditions. Tracheid width, length and coarseness were greater in trees grown in elevated than in ambient temperature. The number of resin canals per mm(2) decreased in the elevated [CO(2)] treatment and increased in the elevated temperature treatments relative to ambient conditions. The treatments decreased the number of rays and tracheids per mm(2) of cross-sectional area, the greatest decrease occurring in the elevated [CO(2)] treatment. It seemed that xylem anatomy was affected more by elevated temperature than by elevated [CO(2)] and that the effects of temperature were confined to the earlywood.  相似文献   

9.
Stem respiration in 20-year-old Scots pine (Pinus sylvestris L.) trees was examined following 5 years of exposure to ambient conditions (CON), elevated atmospheric carbon dioxide concentration ([CO2]) (ambient + 350 micromol mol(-1), (EC)), elevated temperature (ambient + 2-6 degrees C, (ET)) or a combination of elevated [CO2] and elevated temperature (ECT). Stem respiration varied seasonally regardless of the treatment and displayed a similar trend to temperature, with maximum rates occurring around Day 190 in summer and minimum rates in winter. Respiration normalized to 15 degrees C (R15) was higher in the growing season than in the non-growing season, whereas the temperature coefficient (Q10) was lower in the growing season. Annually averaged R15 was 0.36, 0.43, 0.40 and 0.44 micromol m(-2) s(-1) under CON, EC, ET and ECT conditions, respectively, whereas the corresponding values for total stem respiration were 6.55, 7.69, 7.50 and 7.90 mol m(-2) year(-1). The EC, ET and ECT treatments increased R15 by 18, 11 and 22%, respectively, relative to CON, and increased the modeled annual total stem respiration by 18, 15 and 21%. The increase in modeled annual stem respiration under EC and ECT conditions was caused mainly by higher maintenance respiration (22 and 25%, respectively, whereas the increase in growth respiration was 9 and 12%). Growth respiration was unaltered by ET. The treatments did not significantly affect the respiratory response to stem temperature; the mean Q10 value was 2.04, 2.10, 1.99 and 2.12 in the CON, EC, ET and ECT treatments, respectively. It is suggested that the increase in stem respiration was partly a result of the increased growth rate. We conclude that elevated [CO2] increased the maintenance component of respiration more than the growth component.  相似文献   

10.
Effects of needle water potential (Psi(l)) on gas exchange of Scots pine (Pinus sylvestris L.) grown for 4 years in open-top chambers with elevated temperature (ET), elevated CO(2) (EC) or a combination of elevated temperature and CO(2) (EC + ET) were examined at a high photon flux density (PPFD), saturated leaf to air water vapor pressure deficit (VPD) and optimal temperature (T). We used the Farquhar model of photosynthesis to estimate the separate effects of Psi(l) and the treatments on maximum carboxylation efficiency (V(c,max)), ribulose-1,5-bisphosphate regeneration capacity (J), rate of respiration in the light (R(d)), intercellular partial pressure of CO(2) (C(i)) and stomatal conductance (G(s)). Depression of CO(2) assimilation rate at low Psi(l) was the result of both stomatal and non-stomatal limitations on photosynthetic processes; however, stomatal limitations dominated during short-term water stress (Psi(l) < -1.2 MPa), whereas non-stomatal limitations dominated during severe water stress. Among the nonstomatal components, the decrease in J contributed more to the decline in photosynthesis than the decrease in V(c,max). Long-term elevation of CO(2) and temperature led to differences in the maximum values of the parameters, the threshold values of Psi(l) and the sensitivity of the parameters to decreasing Psi(l). The CO(2) treatment decreased the maximum values of V(c,max), J and R(d) but significantly increased the sensitivity of V(c,max), J and R(d) to decreasing Psi(l) (P < 0.05). The effects of the ET and EC + ET treatments on V(c,max), J and R(d) were opposite to the effects of the EC treatment on these parameters. The values of G(s), which were measured simultaneously with maximum net rate of assimilation (A(max)), declined in a curvilinear fashion as Psi(l) decreased. Both the EC + ET and ET treatments significantly decreased the sensitivity of G(s) to decreasing Psi(l). We conclude that, in the future, acclimation to increased atmospheric CO(2) and temperature could increase the tolerance of Scots pine to water stress.  相似文献   

11.
Smart DR 《Tree physiology》2004,24(1):115-120
Cane cuttings of the grapevine rootstock Vitis rupestris Scheele x V. riparia Michx. cv. 3309 Couderc were brought out of endodormancy by warming at 30 degrees C. Cane pieces (12 to 13 cm long) with nodes containing a primary bud were placed in a gas exchange system and monitored for net respiratory fluxes of CO2 and O2. Grapevine respiration rates expressed on a wood volume basis were 1.4 to 3.4 mmol CO2 or O2 m-3s-1, which is higher than stem respiration rates reported for many other woody taxa but similar to rates measured for ecodormant buds of other Vitis species. Passive water loss from canes was 0.7 to 1.2 mmol H2O m-3s-1. During a 7-day period, nonstructural carbohydrate concentrations in cane wood declined only slightly, whereas sucrose was nearly completely consumed. When ambient CO2 concentration ([CO2]) was raised from 300 to 750 micro molmol-1 and then 2000 micromol mol-1, net CO2 exchange rates declined by 5.9 +/- 0.6 and then 11.0 +/- 0.6%, whereas net O2 consumption rates remained about constant. The mean respiration quotient (net CO2/O2 flux) for canes with intact ecodormant buds was 0.99 +/- 0.03 when the [CO2] was 300 micromol mol-1, and decreased to 0.87 +/- 0.03 and 0.088 +/- 0.02 when the [CO2] was increased to 750 and 2000 micromol mol-1, respectively. The results support the hypothesis that, in Vitis canes, inhibition of respiratory CO2 efflux in response to high [CO2] is an indirect consequence of non-photosynthetic carboxylation reactions, and not a result of inhibition of respiratory metabolism.  相似文献   

12.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

13.
Coniferous trees growing in the boreal and temperate zones have a clear annual cycle of photosynthetic activity. A recent study demonstrated that the seasonal variation in photosynthetic capacity of Scots pine (Pinus sylvestris L.) could be attributed mainly to the light response curve of photosynthesis. The magnitude of the light response curve varied over the season while its shape remained constant, indicating that the two physiological parameters quantifying the curve-the quantum yield per unit internal carbon dioxide concentration and the corresponding light-saturated rate-remained proportional to each other. We now show, through modeling studies, that the quantum yield (and hence the light-saturated rate) is related to the annual cycle of temperature through a delayed dynamic response. The proposed model was tested by comparing model results with intensive measurements of photosynthesis and driving variables made from April to October in three shoots of Scots pine growing near the northern timberline. Photosynthetic capacity showed considerable acclimation during the growing season. A single model describing photosynthetic capacity as a reversible, first-order delay process driven by temperature explained most of the variation in photosynthetic capacity during the year. The proposed model is simpler but no less accurate than previous models of the annual cycle of photosynthetic capacity.  相似文献   

14.
On the average there is in the needles of the studied pines 1.9 and 4.9% of reducing sugars in the fresh and dry weight of wintertime needles respectively. There is 1.4% glucose of needle fresh weight (3.0% of needle dry weight) while for fructose the corresponding values are 0.8 and 2.1%. The relative ratio of glucose to fructose was on the average 1.33. Trees more tolerant to fluorides and sulphur dioxide emitted from the phosphate fertilizers factory have a statistically significant lower level of directly reducing sugars in the dry weight of needles (37.1 mg/g) compared to sensitive trees (50.5 mg/g). The control (more tolerant trees) accumulate more glucose and fructose than sensitive ones.  相似文献   

15.
We determined fine root biomass and production of 15-, 35- and 100-year-old Scots pine (Pinus sylvestris L.) stands during three growing seasons. Fine roots were sampled by the soil core method. Mean (+/- SE) annual fine root biomass of Scots pine in the 15-, 35- and 100-year-old stands was 220 +/- 25, 357 +/- 21 and 259 +/- 26 g m(-2), respectively. Fine root biomass of the understory vegetation was 159 +/- 54 g m(-2), 244 +/- 30 and 408 +/- 81 g m(-2), and fine root necromass was 500 +/- 112, 1,047 +/- 452 and 1,895 +/- 607 g m(-2) in the sapling, pole stage and mature stands, respectively. Both understory and Scots pine fine root production increased with stand age. Mean annual Scots pine fine root production was 165 +/- 131, 775 +/- 339 and 860 +/- 348 g m(-2) year(-1) in the sapling, pole stage and mature stand, respectively. The respective mean annual production of all fine roots (Scots pine and understory) was 181 +/- 129, 1,039 +/- 497 and 1,360 +/- 869 g m(-2) year(-1). The Scots pine and understory fine root biomass, necromass and production varied in relation to stand age, although the variation was not statistically significant.  相似文献   

16.
Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.  相似文献   

17.
While needles represent a proportionally large fraction of whole-plant hydraulic resistance, no studies to date have investigated how source–sink disturbances affect needle xylem structure. In this study, we evaluated structural changes in xylem in current-year needles of Scots pine 227 and 411 days after stem girdling (hereafter referred to as DAG). Maximum and minimum tracheid lumen diameters and therefore also the size of tracheid lumen areas increased in needles 227 DAG compared to control needles. In contrast, tracheid dimensions were similar in needles 411 DAG as in the control needles, but smaller xylem area and lower number of tracheids resulted in the lower theoretical needle hydraulic conductivity of those needles. Several needle xylem parameters were intercorrelated in both control and girdled trees. These observed changes provide a new understanding of the processes that occur following a source–sink disturbance. Considering anatomical parameters such as the number of tracheids, tracheid dimension, or needle xylem area, which are rarely described in physiological studies, could be helpful, for example, in understanding to tree hydraulic systems or for modeling gas exchange. Finally, empirical equations were developed to calculate needle theoretical hydraulic conductivity and the number of tracheids in needles using an easily measurable parameter of needle xylem area.  相似文献   

18.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

19.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

20.
Needles of Pinus sylvestris with and without symptoms of Cyclaneusma needle cast, from the west of Poland, were examined for abundance and diversity of fungi using Illumina sequencing. Fungal communities were dominated by Ascomycota (93.6%–98.6% of OTUs). Basidiomycota and non‐culturable fungi were less frequent. Needles were colonized by 260 taxa. Ascomycota, Basidiomycota and Glomeromycota were represented by 149, 39 and 1 taxa. Abundance of fungi was least in 1.5‐year‐old needles attached to twigs and greatest in fallen 2‐year‐old needles. Fungal communities had least diversity in 1.5‐year‐old needles and most diversity in 0.5‐year‐old needles of current growth. It was found that (a) the most common fungi were the needle pathogens Cyclaneusma minus, Lophodermium spp. and Sydowia polyspora; (b) less common potential pathogens were Cenangium ferruginosum, Coniothyrium complex, Desmazierella acicola, Neocatenulostroma germanicum and species in the genera Neodidymelliopsis, Pestalotiopsis, Phoma, Pleurophoma and Pyrenochaeta; (c) common primary or secondary saprotrophs included species of Alternaria, Aureobasidium, Beauveria, Cladophialophora, Cladosporium, Epicoccum, Exophiala, Lecanicillium, Penicillium, Cryptococcus and Kwoniella; (d) Lophodermium was represented mostly by Lophodermium pinastri which occurred 4–72 times more frequently than Lophodermium seditiosum; (e) frequencies of C. minus and C. ferruginosum were lower in the 0.5‐year‐old symptomless needles, increased in the symptomatic and symptomless 1.5‐year‐old needles and decreased after needle fall; (f) frequency of L. seditiosum was highest in 0.5‐year‐old needles; (g) frequency of L. pinastri increased with needle age whereas S. polyspora increased after needle fall; (h) lower frequency of L. pinastrii was associated with higher frequency of S. polyspora. It was concluded that Cyclaneusa needle cast in Poland may be caused by C. minus accompanied by C. ferruginosum, L. seditiosum, L. pinastrii and S. polyspora. Participation of Coniothyrium spp., Epicoccum nigrum, Pestalotiopsis spp. and Phoma spp. in the disease progress cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号