首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为明确烟粉虱传播的番茄褪绿病毒(Tomato chlorosis virus,ToCV)与番茄黄化曲叶病毒(Tomato yellow leaf curl virus,TYLCV)对不同番茄品种的复合侵染情况,于2015年11月在山东省寿光市温室内采集13个番茄品种共390份疑似发病植株叶片,对不同番茄品种的TYLCV抗性和2种病毒的复合侵染以及温室内发病番茄植株上烟粉虱成虫的带毒率进行检测。结果表明,采集的13个番茄品种经分子标记检测鉴定均为TYLCV杂合抗性;不同番茄品种ToCV与TYLCV的复合侵染率存在明显差异,大果番茄粉宴和贝瑞上复合侵染率最高可达73.3%,而樱桃番茄八喜上未检测到这2种病毒的复合侵染。此外,在发病番茄植株上采集的烟粉虱成虫体内可检测到2种病毒,其中烟粉虱ToCV带毒率为90.7%,TYLCV带毒率为80.0%,同时检测到ToCV与TYLCV的概率为71.3%。表明ToCV和TYLCV的复合侵染在山东省番茄生产中普遍发生,烟粉虱可同时携带这2种病毒并广泛传播。  相似文献   

2.
The Bemisia tabaci (Gennadius) biotype B transmitted host range of Tomato chlorosis virus (ToCV), genus Crinivirus, Family Closteroviridae, and Cucumber vein yellowing virus (CVYV), genus Ipomovirus, Family Potyviridae, was studied. New experimental hosts were identified for each of these viruses. Seventeen species in eight plant families were assessed as potential hosts for ToCV. Infection in asymptomatic Anthriscus cereifolium (chervil) test plants by ToCV was confirmed by using a Real-Time PCR assay designed for ToCV. The presence of readily transmissible, infectious ToCV virions in A. cereifolium was confirmed by re-isolation of the virus via whitefly-transmission from A. cereifolium to Lycopersicon esculentum and A. cereifolium. This is the first report of the experimental transmission of ToCV by B. tabaci to a species within the Umbelliferae. All other hosts assessed for the presence of ToCV were found to be uninfected. Ten species in five families were assessed as potential hosts for CVYV. The CVYV host range identified included some important crops and common weeds, such as L. esculentum, Nicotiana tabacum, A. cereifolium, Datura stramonium, Nicotiana benthamiana, Nicotiana clevlandii and Cucumis sativus. Symptoms were present on D. stramonium, N. benthamiana and C. sativus control plants. The presence of infectious whitefly transmitted CVYV virions was confirmed solely for D. stramonium and N. tabacum, following re-isolation of the virus via B. tabaci transmission from all infected species to C. sativus. This is the␣first report of experimental CVYV transmission by B. tabaci to non-cucurbitaceous crop and weed hosts belonging to the Solanaceae or Umbelliferae.  相似文献   

3.
Tomato chlorosis virus causes yellow leaf disorder epidemics in many countries worldwide. Plants of Physalis ixocarpa showing abnormal interveinal yellowing and plants of Physalis peruviana showing mild yellowing collected in the vicinity of tomato crops in Portugal were found naturally infected with ToCV. Physalis ixocarpa and P. peruviana were tested for susceptibility to ToCV by inoculation with Bemisia tabaci, Q biotype. Results confirmed that ToCV is readily transmissible to both species. The infection was expressed in P. ixocarpa by conspicuous interveinal yellow areas on leaves that developed into red or brown necrotic flecks, while P. peruviana test plants remained asymptomatic. Infected plants of both P. ixocarpa and P. peruviana served as ToCV sources for tomato infection via B. tabaci transmission. This is the first report of P. ixocarpa and P. peruviana as natural hosts of ToCV.  相似文献   

4.
为明确山东寿光地区Q型烟粉虱对番茄褪绿病毒(Tomato chlorosis virus,To CV)感病流行的影响及其传毒特性,于2014年调查了该地区设施番茄上烟粉虱种群动态与To CV发病情况,利用特异引物对烟粉虱体内To CV进行了RT-PCR检测;并在室内测定了带毒Q型烟粉虱取食时间和种群数量对To CV感病株率的影响。结果表明,在番茄发病植株上采集的烟粉虱种群体内可检测到To CV;春茬番茄To CV发病株率随烟粉虱种群数量增加而逐渐升高,4—6月是To CV发生高峰期,6月22日发病株率达100%;秋茬番茄烟粉虱种群数量从10月下旬明显下降,而To CV发病株率升高,11月12日发病株率达100%;室内试验表明,To CV感病株率随着带毒Q型烟粉虱数量与取食时间的增加而明显升高。研究表明,Q型烟粉虱能有效传播To CV,且其种群数量对To CV发病株率存在显著影响,可通过防控烟粉虱以控制To CV的危害。  相似文献   

5.
为明确沼泽红假单胞菌Rhodopseudomonas palustris PSB-06菌剂对番茄褪绿病毒(tomato chlorosis virus,ToCV)的抑制作用,连续3年在田间进行沼泽红假单胞菌PSB-06菌剂对ToCV的药效试验,并在室内研究其抗病毒的作用机制。田间试验结果显示,PSB-06菌剂处理能降低ToCV的发生,植株发病率均低于50%,均显著低于清水和氨基寡糖素处理;室内试验结果显示,PSB-06菌剂处理能抑制病毒传播,喷施PSB-06菌剂后的感病番茄的SA含量达532.67 mg/g,PI IINPR1基因表达量也相对上升;同时,健康番茄与感病番茄的叶绿素含量均明显升高;经PSB-06喷施后番茄植株上的烟粉虱Bemisia tabaci生存数量降低。蛋白组学分析结果表明,PSB-06处理促使植物代谢及防御的相关蛋白均上调。表明沼泽红假单胞菌PSB-06菌剂能增强植物免疫和防御烟粉虱的能力,从而有效地控制ToCV的发生及传播。  相似文献   

6.
Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two criniviruses that are emerging worldwide, and induce similar yellowing diseases in tomato crops. While TICV is transmitted only by Trialeurodes vaporariorum , ToCV is transmitted by three whitefly species in two genera Trialeurodes vaporariorum , T. abutilonea and Bemisia tabaci . The efficiency of transmission by T. vaporariorum from plants infected by one virus or by both was compared, and the probability of virus transmission by a single whitefly was derived from group testing experiments. The estimated transmission probabilities ranged from 0·01 to 0·13, and were not significantly different between ToCV and TICV, or between single and mixed infections. Experiments using B. tabaci as a vector and source plants infected by TICV and ToCV did not reveal any functional trans-complementation for transmission of TICV by ToCV, suggesting that if this phenomenon occurs in nature, it is at a very low frequency. Possible reasons why TICV did not establish in southern France while ToCV is now endemic are discussed.  相似文献   

7.
The tomato chlorosis virus (ToCV), transmitted by whitefly species of the genera Bemisia and Trialeurodes in a semipersistent manner, causes significant losses in solanaceous crops including tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum). Worldwide reports of natural and experimental infection of sweet pepper plants with ToCV are contradictory, raising the question of whether the critical factor determining infection is related to the susceptibility of sweet pepper cultivars or the genetics of virus isolates. In this work, ToCV isolates obtained from different hosts and geographical origins were biologically and molecularly analysed, transmitted by B. tabaci MEAM1 and MED, and the reaction of different sweet pepper cultivars was evaluated under different environmental conditions. Brazilian ToCV isolates from tomato, potato (S. tuberosum), S. americanum, and Physalis angulata did not infect plants of five sweet pepper cultivars when transmitted by B. tabaci MEAM1. Temperatures did not affect the sweet pepper susceptibility to tomato-ToCV isolates from São Paulo, Brazil, and Florida, USA. However, sweet pepper-ToCV isolates from Spain and São Paulo, Brazil, were transmitted efficiently to sweet pepper plants by B. tabaci MEAM1 and MED. Although the results indicated that ToCV isolates from naturally infected sweet pepper plants seem to be better adapted to plants of C. annuum, phylogenetic analyses based on the complete nucleotide sequences of RNA1 and RNA2 as well as the p22 gene did not reveal significant nucleotide differences among them. Additional studies are needed to identify intrinsic characteristics of ToCV isolates that favour infection of sweet pepper plants.  相似文献   

8.
The begomovirus Tomato severe rugose virus (ToSRV) and the crinivirus Tomato chlorosis virus (ToCV), in single and co-infections, are very common in tomato crops in Brazil. Both viruses are transmitted by the whitefly Bemisia tabaciMEAM1 (biotype B). The objective of this study was to analyse the interaction between ToSRV and ToCV in tomato plants of cultivars Santa Clara and Kada. Plants at 15, 30 and 45 days after emergence were inoculated with 30 viruliferous B. tabaci per plant. The following treatments were compared: plants inoculated with ToSRV, ToCV, ToSRV + ToCV, and healthy (control). The interaction between these viruses was analysed by measuring the virus titre by qPCR and the fresh and dry weights of the aerial parts of the tomato plants. Based on two independent assays, no significant effects for co-infection of ToSRV and ToCV on virus titres and plant development were observed compared to single infections. The dry weight of tomato plants of both cultivars infected with ToSRV, ToCV, or co-infected did not differ significantly. However, the dry weight of Santa Clara tomato plants infected with ToSRV, ToCV and ToSRV + ToCV showed mean reductions of 21.5%, 25.5% and 32%, respectively, compared to healthy plants, and mean reductions for Kada were 31.7%, 37.5% and 38%, respectively.  相似文献   

9.
Acetylated glyceride (Bemidetach?EC)—a food additive—repels adult sweet potato whiteflies (Bemisia tabaci) and inhibits their mating behavior. We evaluated the effects of acetylated glyceride spraying of greenhouse-grown tomato plants on infestation with B. tabaci and the occurrence of Tomato yellow leaf curl virus (TYLCV) disease under commercial-like conditions. The abundance of adult B. tabaci was significantly reduced by three sprayings of acetylated glyceride, and the TYLCV incidence was significantly suppressed to less than 30% of that in the untreated control. These results suggest that acetylated glyceride sprays suppress the secondary spread of TYLCV in greenhouse-grown tomatoes by lessening B. tabaci adult density.  相似文献   

10.
Tomato chlorosis virus (ToCV), a member of the genus Crinivirus (family Closteroviridae), has been present in Spain since at least 1997, causing annual epidemics of yellowing in protected tomato crops. In 1999, sweet pepper plants exhibiting stunting and symptoms of interveinal yellowing and mild upward curling in the leaves, were found to be infected with ToCV in a greenhouse heavily infested with the whitefly Bemisia tabaci in the province of Almería, southeastern Spain. This study investigated the prevalence of ToCV in tomato and pepper crops in the major growing areas of southeastern Spain (Murcia, Almería and Málaga provinces) over a 3‐year period. In addition, an experimental system was developed for ToCV inoculation using B. tabaci as a vector, which allowed analysis of susceptibility of different pepper cultivars to the virus. The disease syndrome and yield losses induced by ToCV in pepper were also studied under experimental conditions, confirming severe yield reduction in infected plants.  相似文献   

11.
Whiteflies are an insect group that comprises multiple species and biotypes, capable of affecting crops by phloem feeding, virus transmission and promotion of fungal colonization. The distribution of these pests is worldwide. In Costa Rica, a country located in the tropics, the most problematic whiteflies are Bemisia tabaci biotype B and Trialeurodes vaporariorum. In September 2009, two greenhouses in the Alfaro Ruiz region, northwest of the country’s capital, San Jose, were surveyed as part of a larger effort to determine the occurrence of species and races of whiteflies in this agronomically important region. In addition, the insect samples were analyzed to determine the presence of Tomato chlorosis virus (ToCV), a yield-affecting crinivirus transmitted by whiteflies. The results revealed the presence of the Q biotype of B. tabaci, and important invasive species, as well as the expected T. vaporariorum. Viral detection assays identified potentially viruliferous individuals for Tomato chlorosis virus. These results identified a new pest capable of harbouring plant viruses has been identified, as well as a viral agent (ToCV) in a region where it was not reported, and which might cause significant yield losses.  相似文献   

12.
为有效控制日光温室番茄褪绿病毒病,于2014—2015年通过RT-PCR检测方法研究了济南市日光温室番茄褪绿病毒(Tomato chlorosis virus,ToCV)的发生规律、其与Q型烟粉虱Bemisia tabaci种群动态的关系及防虫网对该病毒病的防控效果。结果表明,春季日光温室番茄植株上Q型烟粉虱成虫数量呈增长趋势,5月下旬最高达到0.10头/叶,秋季日光温室番茄植株上Q型烟粉虱成虫数量9月上旬达最高7.42头/叶,后逐渐下降;日光温室Q型烟粉虱带毒率随着定植时间的延长而逐渐上升,之后维持相对稳定状态,即春季为20.00%~24.14%,秋季为30.00%~40.00%。日光温室ToCV发生与Q型烟粉虱成虫数量和带毒率密切相关,春季番茄最高发病率为12.00%;秋季番茄植株最高发病率为93.02%。番茄育苗和生长期用100目防虫网隔离可显著降低番茄植株带毒率。因此,秋季是日光温室ToCV防控关键期,覆盖防虫网阻隔烟粉虱可有效防治ToCV,推荐在日光温室使用。  相似文献   

13.
Protected tomato is the most important horticultural crop in the Algarve (south of Portugal). However, the growing area has decreased by almost 48% since 1995, mainly as a result of the pests Bemisia tabaci and Trialeurodes vaporariorum and the epidemics of Tomato yellow leaf curl virus (TYLCV), a Begomovirus transmitted by B. tabaci. Both whiteflies are vectors of economically important viruses. Recently, Tomato chlorosis virus (ToCV), a member of the genus Crinivirus, transmitted by both B. tabaci and T. vaporariorum, was reported infecting tomato crops in Algarve. A study was carried out to evaluate the dynamics of whitefly populations on tomato crops in Algarve. Population counts of B. tabaci were high in the first months of autumn, then decreased until January, when numbers of T. vaporariorum became higher. Counts of B. tabaci then increased again.  相似文献   

14.
Begomoviruses are transmitted by a single species of vector insect, the whitefly Bemisia tabaci, in a circulative manner. However, the mechanisms of this strict vector specificity have not been clarified. By immunoelectron microscopy, we showed that a begomovirus, Tomato yellow leaf curl virus (TYLCV), can enter midgut epithelial cells of the vector whitefly B. tabaci but not those of a nonvector whitefly, Trialeurodes vaporariorum, belonging to the same family. In midgut epithelial cells of viruliferous B. tabaci, the virus was localized in vesicle-like structures, suggesting endocytosis as an entry mechanism. These structures were also observed in midgut cells of nonviruliferous B. tabaci that had fed on healthy plants and in those of the nonvector T. vaporariorum that had fed on virus-infected plants. Vesicles containing TYLCV particles were observed most frequently in cells in the anterior part of the descending midgut, suggesting that this is the major entry site. These results clearly demonstrated that the virus-containing vector and nonvector whiteflies differ in the cellular localization of the virus and strongly suggest that a critical step in determining the vector insect specificity of begomoviruses is the entry of the viruses into midgut epithelial cells.  相似文献   

15.
Tomato chlorosis virus (ToCV) is an emerging crinivirus in Brazil that causes an economically important disease in tomato (Solanum lycopersicum) and other solanaceous species. ToCV is transmitted predominantly by the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1, formerly biotype B), in a semipersistent manner. As all cultivated tomato varieties and hybrids are susceptible to this crinivirus, the main alternatives for the control of the disease are the use of healthy seedlings for transplanting and the chemical control of the insect vector. The objective of this work was to evaluate the responses of tomato genotypes to infection with this crinivirus and their tolerance to the disease in order to support the development of other alternatives for disease control. Resistance to infection was evaluated by ToCV inoculation with viruliferous B. tabaciMEAM1 followed by virus detection by RT‐PCR and RT‐qPCR. To measure tolerance to the disease, plant development and fruit yield of ToCV‐infected and healthy plants were compared. Among 56 genotypes, only the lineage IAC‐CN‐RT (S. lycopersicum ‘Angela Gigante’ × S. peruvianum ‘LA 444‐1’) was highly resistant to infection with ToCV. Tolerance to the disease over two trials with different genotypes showed variable results. The effect of ToCV on plant development varied from 2.9% to 71.9% reduction, while yield loss varied from 0.2% to 51.8%. The highly ToCV‐resistant lineage IAC‐CN‐RT, which is also resistant to a Spanish isolate of ToCV, might be useful for tomato breeding programmes.  相似文献   

16.
Sweet potato leaf curl virus (SPLCV) infects sweet potato and is a member of the family Geminiviridae (genus Begomovirus). SPLCV transmission occurs from plant to plant mostly via vegetative propagation as well as by the insect vector Bemisia tabaci. When sweet potato seeds were planted and cultivated in a whitefly‐free greenhouse, some sweet potato plants started to show SPLCV‐specific symptoms. SPLCV was detected by PCR from all leaves and floral tissues that showed leaf curl disease symptoms. More than 70% of the seeds harvested from SPLCV‐infected sweet potato plants tested positive for SPLCV. SPLCV was also identified from dissected endosperm and embryos. The transmission level of SPLCV from seeds to seedlings was up to 15%. Southern blot hybridization showed SPLCV‐specific single‐ and double‐stranded DNAs in seedlings germinated from SPLCV‐infected seeds. Taken altogether, the results show that SPLCV in plants of the tested sweet potato cultivars can be transmitted via seeds and SPLCV DNA can replicate in developing seedlings. This is the first seed transmission report of SPLCV in sweet potato plants and also, to the authors' knowledge, the first report of seed transmission for any geminivirus.  相似文献   

17.
Secondary endosymbionts of Turkish Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations were determined by PCR-based DNA analysis. Experiments were conducted with B. tabaci samples collected from various host plants between 2007 and 2012. Four secondary endosymbionts, namely, Rickettsia, Hamiltonella, Arsenophonus and Wolbachia, were detected from two different B. tabaci species (B and Q). While Arsenophonus and Wolbachia were determined only from the Q, Hamiltonella was found only on the B. Rickettsia was determined on both B and Q. Forty percent of individuals were infected with Arsenophonus, followed by Hamiltonella (32.4 %), and Wolbachia (8 %). Infection rate of Rickettsia was found to be higher on B (29.7 %) than on Q (21.6 %). This study is the first report of endosymbionts of B. tabaci populations collected from Turkey, and studies should be continued to cover larger areas, more host plants and B. tabaci populations.  相似文献   

18.
番茄黄化曲叶病毒(tomato yellow leaf curl virus, TYLCV)是一种由烟粉虱传播的单链环状DNA病毒, 在田间可与多种病毒发生复合侵染, 如番茄褪绿病毒(tomato chlorosis virus, ToCV)等?本文对比了TYLCV单独侵染和TYLCV与ToCV复合侵染对烟粉虱获取和传播TYLCV的影响?结果表明, 与取食TYLCV单独侵染的番茄相比, 取食复合侵染番茄的烟粉虱对TYLCV的传毒率显著提高, 且番茄植株和烟粉虱体内TYLCV的病毒积累量也显著提高?试验结果说明复合侵染会提高烟粉虱的传毒率, 促进TYLCV的发生与流行?  相似文献   

19.
研究烟粉虱传播番茄褪绿病毒Tomato chlorosis virus (ToCV)的发生规律,建立其预测预报模型,能够指导田间早期有效防治.本研究于2014年-2018年每年采集山东寿光蔬菜基地大棚番茄和杂草的植株叶片,并收集植株上携带的所有烟粉虱,以健康番茄、杂草叶片和室内饲养的健康烟粉虱为阴性对照;实验室ToCV...  相似文献   

20.
In 2005, severe leaf curling and yellowing were observed on tomato plants on Ishigaki Island. Because the symptoms were consistent with infection by a begomovirus, we used a polymerase chain reaction (PCR) with specific primers for begomovirus DNA-A and DNA satellite component (DNA-β) and detected products of the expected sizes from symptomatic tomato plant samples. DNA sequence analyses of the PCR products revealed that the symptomatic tomato plants were associated with Ageratum yellow vein virus (AYVV) infection. We confirmed AYVV transmission from the naturally infected weed host, Ageratum conyzoides, to healthy tomato plants by the insect vector Bemisia tabaci B biotype. This report is the first of AYVV occurrence in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号