首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main causal agent of early blight, the noxious disease of solanaceous crops, is generally considered to be Alternaria solani Sorauer (in a broad sense). However, heterogeneity in many morphological features of this pathogen has been noted suggesting that the disease may not be caused by a single species. Recent research has revealed that several large-spored Alternaria species may cause disease of potato and tomato including A. solani sensu stricto and A. tomatophila. The goal of our research was to compare Russian large-spored Alternaria isolates from tomato and potato to test the hypothesis that early blight of tomato and potato are caused by different species. Cluster analysis of genetic distances estimated from 12 polymorphic molecular markers (universally primed-polymerase chain reaction and randomly amplified polymorphic DNA) revealed two groups of isolates accepted here as A. solani and A. tomatophila that were supported by morphology and host plant association. Differentiation of species was supported by phylogeny derived from the DNA sequences of a portion of the Alt a1, gpd and calmodulin genes. Species-specific primers based on the Alt a1 and calmodulin gene sequences for both species were designed. Under laboratory conditions, A. solani isolates were equally aggressive on both tomato and potato, whereas A. tomatophila was highly aggressive to tomato but only weakly aggressive to potato. In the field, A. solani was isolated from potato, tomato and from several wild potato species including S. schickii, S. papita and S. kurtzianum. The majority (90 %) of A. solani isolates carried the mating type locus 1 (MAT1) idiomorph MAT1-1 while the majority (88 %) of A. tomatophila isolates carried the MAT1-2 idiomorph.  相似文献   

2.
Pyrethrum seed has an important role in the transmission of Stagonosporopsis tanaceti, the cause of ray blight disease of pyrethrum. A TaqMan probe based polymerase chain reaction (PCR) assay was developed to quantify the level of S. tanaceti inocula in pyrethrum seed and seedlings. Primer pair (St_qF3, St_qR2) was designed based on the intergenic spacer (IGS) region of S. tanaceti, which produced a 125 bp amplicon specific to S. tanaceti. TaqMan PCR assay using St_qF3, St_qR2 and a probe St_qP was highly specific against the genomic DNA of S. tanaceti, but did not amplify DNA of 14 related Stagonosporopsis species or other foliar pathogens of pyrethrum. The sensitivity limit of this assay was measured using the cycle threshold (Ct) value which ranged from 17.59 for 10 nanograms (ng) to 36.34 for 100 femtograms (fg) genomic DNA of S. tanaceti. There was a significant negative correlation (r = ?0.999, P < 0.001) between the Ct value and the percent of S. tanaceti infected seed. In addition, this TaqMan PCR assay detected latent infection within seedlings. This assay could be applied to test commercial seed and seedlings before deciding on the appropriate management practices.  相似文献   

3.
In 2013, during a field survey conducted in Portugal on potato, Solanum tuberosum, an unusual esterase (EST) phenotype was detected in a root‐knot nematode (RKN) from potato roots collected in Coimbra. This Portuguese isolate was purified and maintained on tomato, S. lycopersicum, and morphological, biochemical and molecular characteristics were studied. Perineal pattern morphology was highly variable, similar to Meloidogyne ethiopica and not useful for identification. The EST phenotype, from young egg‐laying females, displayed three bands similar to the Brazilian M. luci (L3) and distinct from M. ethiopica (E3). Phylogenetic analyses of mitochondrial cytochrome oxidase subunit I and the mitochondrial DNA region between COII and 16S rRNA genes revealed that the Portuguese isolate grouped with M. luci isolates close to M. ethiopica isolates. However, considering the ITS1‐5.8S‐ITS2 region, the Portuguese isolate grouped with isolates of M. luci, M. ethiopica and M. hispanica, which limits the confidence of this region for M. luci diagnosis, and its differentiation from other species with morphological similarities. The M. luci pathogenicity to potato was also assessed in 16 commercial cultivars and compared with M. chitwoodi, considered to be a quarantine RKN species by EPPO. All potato cultivars were susceptible to both Meloidogyne species with gall indices of 5 and higher reproduction factor values ranging from 12.5 to 122.3, which suggests that M. luci may constitute a potential threat to potato production. In the present study, M. luci is reported for the first time attacking potato in Portugal.  相似文献   

4.
Potato and tomato are the two major hosts for Phytophthora infestans causing late blight. The susceptibility of leaves and whole plants of Solanum nigrum, S. villosum, and S. scabrum to infection by P. infestans was tested under laboratory conditions. Out of 39 plants representing 38 different S. nigrum accessions, 16 were highly resistant (seven accessions did not show any symptoms of infection, nine were highly resistant showing necrotic lesions in the place of infection), and 23 plants of S. nigrum were colonized by, at least, 1 of the 2 isolates of P. infestans (17 accessions were infected with two P. infestans isolates, and 6 accessions showed different reactions depending on the isolate used for inoculation). Three accessions of S. villosum, and one accession of S. scabrum were tested and did not show any symptoms of infection. The majority of S. nigrum accessions infected by P. infestans in a detached leaf assay were also infected in the whole plant assay. The reaction of field- and greenhouse-grown plants to inoculation with P. infestans in detached leaf assays was similar, but in some cases leaves from field-grown plants reacted as resistant in comparison with the leaves from greenhouse-grown plants, which were susceptible.  相似文献   

5.
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is one of the most serious pests of tomato, capable of causing 100% crop losses under favourable conditions. We studied the effect of different host plants on developmental and population parameters of this pest at 25?±?0.5 °C temperature, 70?±?5% relative humidity and 12 L: 12D photoperiod. Host plant had significant effect on the developmental biology and the population growth parameters of the pest. The leafminer developed fastest on tomato leaves and slowest on potato tubers. Population growth parameters like intrinsic rate of increase, net reproductive rate, finite rate of increase, doubling time and weekly multiplication rate of T. absoluta were highest on tomato leaves and lowest on potato tubers. Mean generation time was minimum on tomato leaves and maximum on potato tubers. Females developed on tomato leaves were more fecund than other hosts. Though, tomato was found to be the most suitable host plant of T. absoluta, yet, the pest developed and grew successfully on other alternate hosts like potato (Solanum tuberosum L.), brinjal (Solanum melongena L.) and pepino (Solanum muricatum Aiton). These hosts can, therefore, play an important role in the survival, population build up and overwintering of the miner. Further, under favourable conditions the miner can become a serious pest on these crops and need to be monitored on these crops as well.  相似文献   

6.
Phenotypic variants of Clavibacter michiganensis subsp. michiganensis (Cmm) were isolated from pepper fields and from pepper seeds during quarantine inspections. All strains isolated from pepper (pepper isolates) produced orange-coloured colonies with lower mucoidy than typical Cmm strains isolated from tomato (tomato isolates). However, the results of ELISA, fatty acid analysis, 16S rDNA sequencing, and PCR analysis showed that all pepper isolates were similar enough to be identified as Cmm. In addition to phenotypic variations, the pepper isolates showed different pathogenic and genetic characteristics from tomato isolates from the USA, Europe, or other countries. They could be clearly distinguished in terms of pathogenicity, as they showed increased pathogenicity to pepper but reduced pathogenicity to tomato. Tomato isolates caused strong wilting and canker in tomato, but caused only canker and no wilting in pepper and bell pepper. However, pepper isolates caused no wilting, even in tomato, and only caused canker in the three host plants. In addition, compared to tomato isolates, pepper isolates showed increased colonization efficiency and caused a greater reduction in shoot dry weight in pepper. Pepper and tomato isolates could be separated into two groups according to host origin on the basis of 16S rDNA and ITS sequence analysis. They also showed different rep-PCR genomic fingerprints. All pepper isolates showed higher cellulase activity than tomato isolates on M9CMC plates. However, two plasmid-borne virulence genes of Cmm, pat-1, and celA, were not detected in any pepper isolates by PCR. Furthermore, PCR for pathogenicity-related genes located on a pathogenicity island (PAI) revealed that all tomato isolates were positive for these genes, whereas the pepper isolates did not show any PCR products for the chpC, chpG, ppaA, or tomA genes. Therefore, we suggest that the pepper isolates may represent a separate Cmm population that has evolved within the limits of this host.  相似文献   

7.
Botrytis cinerea causes gray mold disease and affects hundreds of plant species, including tomato (Lycopersicon esculentum). The wild nightshade, Solanum lycopersicoides, is cross compatible with tomato and is more resistant to B. cinerea, thus representing a potential source for crop improvement. Tests involving droplet inoculation of detached leaves and spray inoculation of entire seedlings demonstrated that resistance to B. cinerea varies among S. lycopersicoides accessions, with S. lycopersicoides LA2951 being the most resistant accession tested. Expression of resistance in the intergeneric hybrid (L. esculentum cv. 'VF36' × S. lycopersicoides LA2951) suggested that resistance is at least partially dominant in tomato. A green fluorescent protein-tagged B. cinerea strain was used for confocal microscopic comparison of infection in leaves of S. lycopersicoides and tomato. Even though S. lycopersicoides supported spore germination, there was evidence for hyphal lysis and death 3 days after inoculation, at a time when lesions were expanding on susceptible tomato plants. The reduced frequency of B. cinerea lesion spread on S. lycopersicoides explains why this fungus produced fewer spores in this wild nightshade than in tomato.  相似文献   

8.
Thirty-nine isolates of Phytophthora infestans were collected from the wild host Solanum ochranthum in the highland tropics of Ecuador and characterized with a set of phenotypic and molecular markers (mating type, metalaxyl sensitivity, the allozyme loci Gpi, and Pep, mitochondrial DNA haplotype, RFLP, and SSR), as well as for pathogenicity on various hosts. Three groups of isolates (A, B, and C) were identified based on their multilocus genotypes and variable abilities to cause disease on different hosts. Group A had a combination of alleles for the Gpi (86/100), Pep (96/100) and mtDNA (Ia) loci, as well as an RFLP fingerprint, that have not been reported for P. infestans in Ecuador, or elsewhere. Group B shares many marker characteristics with the US-1 lineage described in Ecuador on tomato, pear melon (S. muricatum), and S. caripense, but has SSR alleles not present in typical US-1 isolates. Group C for all markers tested is identical to the EC-1 lineage described on cultivated and wild potatoes in Ecuador. All isolates from S. ochranthum were able to re-infect their host of origin in the detached leaf assay; however, we did not draw clear conclusions as to the relative aggressiveness of the three groups on this host. Isolates of group A were the most specialized and were generally non-pathogenic or weakly pathogenic on all hosts other than S. ochranthum. Groups B and C infected tuber-bearing hosts, including the cultivated potato but were generally non-pathogenic on other non-tuber bearing hosts. Solanum ochranthum was infected by isolates coming from tuber-bearing Solanum hosts (i.e., the EC-1 lineage of P. infestans) and some US-1 isolates from non-tuber bearing hosts. Thus, in nature this species might be a potential reservoir of inoculum of different pathogen populations able to infect the cultivated hosts potato, tomato and pear melon (S.␣muricatum). Unlike potato and tomato in Ecuador, each of which is primarily attacked by a highly specialized pathogen population, S. ochranthum appears to harbour at least three pathogen groups of␣different genetic make-up. The unresolved issue of potential host specificity in isolates found on S.␣ochranthum could complicate efforts to use this species in tomato improvement.  相似文献   

9.
Stemphylium lycopersici (Enjoji) W. Yamam was initially described from tomato and has been reported to infect different hosts worldwide. Sequence analyses of the internal transcribed spacer (ITS) regions 1 and 2, including 5.8S rDNA (ITS-5.8S rDNA) and glyceraldehyde-3-phosphate dehydrogenase (gpd) gene, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), as well as virulence studies were conducted to analyze 46?S. lycopersici isolates. Stemphylium lycopersici isolates used in this study were obtained from diseased tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), pepper (Capsicum annuum L.) and lettuce (Lactuca sativa L.) from major vegetable growing regions of Malaysia, including the three states of Pahang, Johor and Selangor between 2011 and 2012. Phylogenetic analysis of a combined dataset of the ITS-5.8S rDNA and gpd regions indicated that all isolates were clustered in the sub-cluster that comprised S. lycopersici, and were distinguished from other Stemphylium species. Cluster analyses using the UPGMA method for both RAPD and ISSR markers grouped S. lycopersici isolates into three main clusters with similarity index values of 67 and 68 %. The genetic diversity data confirmed that isolates of S. lycopersici are in concordance to host plants, and not geographical origin of the isolates. All S. lycopersici isolates were pathogenic on their original host plants and showed leaf spot symptoms; however, virulence variability was observed among the isolates. In cross-inoculation assays, the representative isolates were able to cause leaf spot symptoms on eggplant, pepper, lettuce and tomato, but not on cabbage.  相似文献   

10.
A series of selection experiments on potato cyst nematode Globodera pallida, pathotype Pa1, tested the virulence response of the nematode to a range of resistant potato Solanum genotypes. Alleles conferring virulence against all four Solanum sources used in the study (i.e. Solanum vernei, S. multidissectum, S. sanctae-rosae and S. tuberosum ssp. andigena) were detected. Selection for multiple virulence against a combination of resistant sources resulted in the originally-selected virulence genes being retained or lost. The mechanism, or basis, of potato cyst nematode resistance differs between the Solanum species. The appropriate use of resistance cultivars produced from a range of Solanum-resistant species offers a management tool for controlling potato cyst nematode levels in infested land.  相似文献   

11.
Diseases of solanaceous crops caused by the phloem-limited bacterium ‘Candidatus Liberibacter solanacearum’ (Lso), vectored by the tomato potato psyllid Bactericera cockerelli, pose a major economic threat to crop production. Lso is yet to be cultured and, therefore, effective control strategies depend heavily on the early detection of the pathogen via polymerase chain reaction (PCR) assays. In this study, two new assays for the detection of Lso in New Zealand field samples were developed, and compared with previously available assays. Firstly, a single-tube semi-nested gel-based PCR assay was developed for the genus-specific detection of liberibacter species, and shown to provide increased sensitivity over standard and nested PCR. Secondly, a single-tube semi-nested SYBR Green real-time PCR (qPCR) assay was developed for the specific detection of Lso in field samples from New Zealand, with a limit of detection of five copies of the target gene per reaction. Semi-nested qPCR showed similar sensitivity compared with TaqMan qPCR with the primer-probe combination LsoF-HLBpr and was 10- to 50-fold more sensitive than the conventional PCR assays tested. Quantification of titre in Lso-affected tubers by SYBR Green qPCR revealed a positive relationship between pathogen titre and the discolouration of fried tuber slices, a symptom indicative of Lso infection. Quantification of Lso in field samples of potato and tomato also revealed many samples with titres below the limit of detection of conventional PCR. The observation of low-titre samples demonstrated the utility of SYBR Green qPCR for detection of Lso, as in addition to increased sensitivity melt-curve analysis enables confirmation of qPCR data by identifying false positive results.  相似文献   

12.
We developed real-time PCR assays using TaqMan probes to detect and quantify Rosellinia necatrix, the causal agent of white root rot in many plant species. Two sets of PCR primers and TaqMan probe indicated that their detection limits could be as low as 1 fg of template DNA. Using the real-time PCR assays with the TaqMan probes, we were able to quantify R. necatrix DNA in naturally diseased roots of Japanese pear and in artificially infested soil samples. Although the new assays were inadequate for use with naturally infested soil samples, nested PCR procedures improved the detectability of the new assays.  相似文献   

13.
The complete coat protein (cp) gene sequence of eighty Tomato leaf curl New Delhi virus-[potato] (ToLCNDV-[potato]) isolates collected from eleven states were determined. Phylogenetic analysis based on cp gene grouped the isolates into two major clades (I & II) and they shared 95.9–100.0% identity. The DNA A and DNA B of eight representative isolates (six from clade I and two from clade II) were 2739–2740 and 2692–2694 nts long and shared 94.6–99.4% and 97.2–99.5% homology within the isolates, respectively. Among the eight isolates, the DNA A of two isolates (Clade II), GWA-5 and FAI-19 had 94.6–95.3% sequence identity to other six isolates and formed a sub-clade within the ToLCNDV-[potato] isolates. Similar grouping was also revealed with AC1 and AC4 genes of these eight isolates. The DNA A components shared more than 90.0% identity with the DNA A of ToLCNDV isolates from cucurbitaceous crops, tomato, bhendi, 89.0–90.0% with ToLCNDV-papaya isolates and 70.4–74.0% with other tomato leaf curl viruses. Hence, the begomovirus infecting potatoes are the ToLCNDV isolates, designated as ToLCNDV-[potato]. Whereas, the DNA B components shared 86.6–91.7% identity with ToLCNDV isolates from cucurbits, tomato and bhendi. Evidence for intra-species recombination was detected only in DNA A with a maximum of three events in GWA-5 and FAI-19 isolates. Analysis of cp gene, DNA A, iterons and recombination events clearly indicate that two groups of ToLCNDV-[potato] infects potato in India.  相似文献   

14.
Tomato bacterial canker and wilt disease caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is among one of the major bacterial diseases associated with tomato (Solanum lycopersicum L.) in the western Mediterranean region of Turkey. A total of 118 Cmm isolates were obtained from the petiole and the main vein of leaves of different cultivars of diseased tomato plants, and these isolates were cultured in semiselective medium (mSCM). The identity of Cmm isolates was confirmed through gas chromatography-fatty acid methyl-esters (GC-FAME) analysis and polymerase chain reaction (PCR) using the primers, CMM5 and CMM6. The fatty acid analysis of all the Turkish isolates yielded major components that included anteisoheptadeconic acid (a15:0), palmitic acid (i16:0) and anteisoheptadeconic acid (a17:0); the analysis detected and categorized all the isolates into 10 different FAME groups. Among repetitive element sequence PCR (rep-PCR) analysis, Box primer yielded the most reproducible genomic profiles with band sizes that ranged from ~200 bp to 2 kb. The isolates were also separated into 12 groups by pulsed-field gel electrophoresis (PFGE) after digesting the total genomic DNA with SpeI, a rare cutting enzyme. The genome sizes of the different strains of Cmm were also determined after running unrestricted total genomic DNA, which yielded average values between 3.0 and 3.5 MB. All the Cmm isolates had pCM1 and pCM2 plasmids. This is the first report on the detailed characterization of the Cmm population in Turkey.  相似文献   

15.
In autumn 2006 in the Netherlands, Potato spindle tuber viroid (PSTVd) infections were detected in 42·3 and 71·9% of professionally grown lots of Brugmansia spp. and Solanum jasminoides respectively. The infected lots contained 73 985 and 431 374 plants, respectively, demonstrating the presence of many potential viroid sources for tomato ( Solanum lycopersicum ). PSTVd was identified in cultivars of Brugmansia × candida , B. × flava , B. sanguinea , B. suaveolens and unspecified Brugmansia species/cultivars. Most infected lots of Brugmansia spp. originated from a single Dutch nursery; most infected lots of S. jasminoides originated abroad. Sequence analysis revealed that the PSTVd genomes from Brugmansia spp. contained an average of 360 nt, whereas all genomes from S. jasminoides except one consisted of 357 nt. Furthermore, the collective PSTVd genotypes showed polymorphism at four or more positions, except for two cases in which genotypes from Brugmansia spp. and S. jasminoides were identical. Phylogenetic studies showed that PSTVd genotypes from Brugmansia spp. and S. jasminoides grouped apart from each other and from PSTVd isolates from potato ( Solanum tuberosum ) and Physalis peruviana . The PSTVd genotypes from tomato did not form a separate cluster, but were dispersed over clusters of vegetatively or partly vegetatively propagated plant species, i.e. potato, P. peruviana and S. jasminoides . Moreover, mechanical inoculation of the predominant PSTVd genotypes from S. jasminoides to tomato was successful. These results provide evidence that vegetatively propagated, solanaceous plant species have been sources of infection for tomato crops in the past.  相似文献   

16.
The high-temperature-tolerant Pythium species P. aphanidermatum, P. helicoides, and P. myriotylum cause serious diseases in many crops under hydroponic culture systems in Japan. Control of the diseases is difficult because these zoosporic pathogens spread quickly. In this study, a real-time PCR method was developed for monitoring the spread of zoospores of the three pathogens. Specific primers and TaqMan probes were established using the internal transcribed spacer regions of the rDNA. Specificity was confirmed using known isolates of each species and closely related non-target species. The sensitivity of DNA detection was 10 f. for each pathogen. 10 f. DNA corresponded to 4 P. aphanidermatum, 3 P. myriotylum, and 4 P. helicoides zoospores, respectively. Therefore, this real-time PCR method was used to evaluate and monitor zoospores in the nutrient solutions of ebb-and-flow irrigation systems for potted flower production and closed hydroponic culture systems for tomato production. The results indicated that the pathogens were present in the hydroponic culture systems throughout the year, and spread before disease occurrence.  相似文献   

17.
Pith necrosis is a common disease of tomato in Europe, mainly caused by Pseudomonas corrugata and other soil-borne species of Pseudomonas. During 2011–2012 a survey was conducted in soil-grown tomato crops in southeastern Sicily (Italy). Plants showed pith necrosis, brown discolouration of the vascular tissues, leaf chlorosis and sometimes wilting of leaves. Thirty bacterial isolates from symptomatic tissues, forming colonies on NA and KB, were identified by morphological, biochemical and physiological tests. Among them, seven isolates were analyzed for their 16S rDNA and 16S–23S spacer region sequence that resulted in 99 % identity to that of the Xanthomonas perforans type strain (GenBank accession number GQ46173over 2.085 bp.). Additional sequences of fusA, gapA, gltA, gyrB, lacF, and lepA from one selected isolate were 100% identical to sequences of the Xanthomonas perforans type strain. X. perforans local isolates showed similar genomic patterns with REP-PCR and fAFLP, and were clearly distinguished from other Xanthomonas spp. type strains. In stem-inoculation assays, bacteria isolated from symptomatic tomato plants identified as P. fluorescens, P. putida, P. marginalis, P. citronellolis, P. straminea, and Pantoea agglomerans induced discolouration of vascular tissues, while Pectobacterium carotovorum subsp. atrosepticum isolates induced soft rot. Conversely, the isolates here identified as Xanthomonas perforans were able to induce pith necrosis, vascular discolouration, longitudinal splits and external lesions on stems. This report of X. perforans causing pith necrosis on tomato represents a potentially serious problem that may limit the productivity of tomato crops.  相似文献   

18.
The potato brown rot, caused by the bacterium Ralstonia solanacearum biovar 2/race 3 (potato race) was classified as quarantine pathogen by the European Union (EU) due to the risks it would pose for the cultivation of potatoes and tomatoes. Quarantine regulations stipulate control surveys and tests on potatoes used as seed, for food as well as industrial purposes and in surface water to check for contamination with R. solanacearum. Toward this end, the Institute for Plant Protection of the Bavarian State Research Center for Agriculture has been conducting an intensive survey for the presence of the potato brown rot pathogen in Bavarian rivers since 1997. An important component of this monitoring is the testing of potential weed hosts growing near river banks. Every year, from June to September, water- and plant samples have been collected from rivers in potato cultivation areas and near potato processing plants. Since the start of the survey, a total of 70 rivers has been tested. The presence of the pathogen was checked by immunofluorescence antibody staining (IFAS) and polymerase chain reaction (PCR). Positive IFAS or PCR tests were checked again by biotests and pathogenicity tests on eggplant (Solanum melongena). So far R. solanacearum could be found in nine Bavarian rivers. Concerning wild plants growing near the river banks the bacterium could be isolated only from roots of the bittersweet nightshade (Solanum dulcamara). However, from stinging nettle (Urtica dioica), nodding beggartick (Bidens cernua), black nightshade (Solanum nigrum), great yellowcress (Rorippa amphibia) and gipsywort (Lycopus europaeus) R. solanacearum could not be isolated. In contaminated rivers, with S. dulcamara growing on the river banks, R. solanacearum could be detected repetitively for several years. In 1997 it was found that rivers can be contaminated by the pathogen, if insufficiently treated sewage from potato processing plants is released into waterways. Potato cultivation is threatened by surface water only, if contaminated water is used to irrigate potato fields. Consequently, surface water should never be used for irrigation of potato fields or application of plant protection products.  相似文献   

19.
Late blight, caused by Phytophthora infestans, has emerged as the most destructive disease of potato and tomato in South India since 2008. One hundred and fifty‐seven isolates of Phytophthora infestans, 63 from potato and 94 from tomato, were collected from major potato and tomato production areas of South India between 2010 and 2012. Their phenotypic and genotypic characteristics were determined and compared with reference isolates. Isolates were characterized based on mating type, in vitro metalaxyl sensitivity, mitochondrial DNA haplotype, RG57 DNA fingerprinting patterns, SSR markers and aggressiveness on potato and tomato, in order to monitor population changes in P. infestans. All isolates were A2 mating type, metalaxyl resistant, mtDNA haplotype Ia and had RG57 and SSR fingerprints almost identical to the 13_A2 clonal lineage reported in Europe. Variation at the D13 and SSR4 loci allowed discrimination of minor variants, designated as 13_A2_3, 13_A2_3b, 13_A2_3c and 13_A2_1. A comparison of the lesion diameters caused by 157 isolates on detached leaflets of three potato and tomato cultivars showed all isolates to be equally aggressive, confirming that the same clonal population is infecting both hosts. This study demonstrates that the 13_A2 lineage was responsible for severe late blight outbreaks on potato and tomato in South India and has replaced the prior population represented by the US‐1 and other genotypes. Revised management strategies will be required to combat this destructive 13_A2 clonal lineage and monitoring of the population across other potato‐ and tomato‐growing regions of India is warranted.  相似文献   

20.
Polymerase chain reaction (PCR) methods for detection and differentiation of Ralstonia solanacearum strains were compared. The 16S–23S rRNA gene ITS sequence data revealed the two main sequence clusters (divisions I and II) of R. solanacearum and further subclusters of division II. Based on this sequence data, primers were designed which differentiated divisions I and II. Furthermore, to improve reliability of the PCR assay for routine detection of R. solanacearum in host plants, a novel multiplex PCR assay was developed in which the pathogen-specific sequences are coamplified with host plant DNA as an internal PCR control (IPC). The assay was validated during routine testing of potato samples submitted in official surveys. Of 4300 samples from 143 cultivars, 13 tested positive in both multiplex PCR and immunofluorescence (IF) assays and could be confirmed by bioassay in tomato seedlings and reisolation of the pathogen. The IPC was successfully amplified from all samples tested. A further 12 samples gave positive IF results which were not confirmed by either the multiplex PCR or tomato bioassay, indicating a greater specificity of the latter two assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号