首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soil compaction can affect crop growth and greenhouse gas emission and information is required of how both these aspects are affected by compaction intensity and weather. In this paper we describe treatments of compaction intensity and their effects on soil physical conditions and crop growth in loam to sandy loam cambisol soils. Soil conditions and crop performance were measured over three seasons in a field experiment on soil compacted by wheels on freshly ploughed seedbeds. Ploughing buried the chopped residues of the previous crop. After ploughing, traffic was controlled such that the experimental plots received wheel traffic only as treatments. The overall objective was to discover how the intensity and distribution of soil compaction just before sowing influenced crop performance, soil conditions and emissions of nitrous oxide. Compaction treatments were zero, light compaction by roller (up to 1 Mg m−1) and heavy compaction by loaded tractor, (up to 4.2 Mg). The experiment was located at Boghall, near Edinburgh (860 mm average annual rainfall) for the first two seasons under spring and winter barley (Hordeum vulgare L.) and in a drier area at North Berwick (610 mm average annual rainfall) for the third season under winter oil-seed rape (Brassica napus L.). Heavy compaction in dry soil conditions had little effect on crop growth. However, in wet conditions heavy compaction reduced air porosity, air permeability and gas diffusivity, increased cone resistance and limited winter barley growth and grain yield. Heavy compaction in wet conditions reduced winter barley yields to 7.1 Mg ha−1, in comparison to 8.8 Mg ha−1 in the zero compaction treatment. The compaction status of the top 15 cm of soil seemed to be particularly important. Loosening of the top 10 cm of soil immediately after heavy compaction restored soil conditions for crop growth. However, zero seed bed compaction gave patchy and uneven crop emergence in dry conditions. Both zero and light compaction to a target depth of 10 cm gave similar crop productivity. Maintenance of a correct compaction level near the soil surface is particularly important for establishment and overwintering of barley and oil seed rape.  相似文献   

2.
The fertile, but naturally poorly drained soils of the western Fraser Valley in British Columbia, Canada are located in an area subject to about 1200 mm of rainfall annually. These soils were under intensive conventional tillage practices for years, which contributed to their poor infiltrability, low organic matter, and overall poor structure. Development of tillage practices that incorporate winter cover crops and reduce traffic in spring is required to reduce local soil degradation problems. The objective of this study was to determine short-term responses of soil physical properties to fall and spring tillage (ST) and fall and no spring tillage (NST) systems, both using spring barley (Hordeum vulgare L.) and winter wheat (Triticum aestivum L.) as winter cover crops. Field experiments were conducted for 3 years following seeding of the winter cover crops in fall 1992 on a silty clay loam Humic Gleysol (Mollic Gleysol in FAO soil classification). Average aeration porosity was 0.15 m3 m−3 on NST and 0.22 m3 m−3 on ST, while bulk density was 1.22 Mg m−3 on NST and 1.07 Mg m−3 on ST at the 0–7.5 cm depth. Neither of these two soil properties should limit seedling and root growth. After ST, mechanical resistance was consistently greater for 500–1000 kPa in NST than in ST, but never reached value of 2500 kPa considered limiting for root growth. The NST system did not increase soil water content relative to ST, with soil water contents being similar at 10 and 40 cm depth in all years. In 2 out of 3 years NST soil was drier at the 20 cm depth than was ST soil. Three years of NST did not result in a significant changes of aggregate stability relative to ST. This experiment showed that limiting tillage operations to the fall did not adversely affect soil physical conditions for plant growth in a humid maritime climate.  相似文献   

3.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

4.
Poor lateral water infiltration into permanently raised beds (PRB) can reduce crop yield and water use efficiency (WUE) in dryland agriculture. Especially for densely planted crops the reduced soil moisture affects seedling emergence and causes slow crop growth. Soil loosening with three different types of cutters was tested to overcome this problem of wide PRB in this study. A field experiment with five treatments (traditional tillage, bed without soil loosening, bed with soil loosening by two-edge cutter, bed with soil loosening by flat cutter and bed with soil loosening by V-shaped cutter) was conducted in the Hexi Corridor, northwest China, on spring wheat in 2005 and 2006. The effects of soil loosening and the performances of the three cutters were assessed based on 2 years of soil moisture, bulk density, temperature, spring wheat growth, yield, WUE, power and fuel consumption data. Soil loosening significantly increased lateral water infiltration and thus improved soil water content by 3–8% to 100 cm depth and soil temperature by 0.2–0.4 °C to 30 cm depth compared to beds without soil loosening on sandy-loam soil in 100 cm wide bed systems. Furthermore, bulk density at 10–20 cm depth was about 7.4% lower for bed with soil loosening treatments than for bed without soil loosening. The best results were achieved by the V-shaped cutter, which at a slight additional fuel consumption of 0.46–0.84 l ha−1 offered the greatest benefits to spring wheat yield and WUE. Spring wheat yields increased by 5% and WUE improved by 38% compared to traditional tillage due to higher soil moisture and temperature, lower bulk density and faster growth. The improvements in WUE have tremendous implications in the arid areas of northwest China where agriculture relies heavily on irrigation, but water resources are scarce. We conclude therefore that soil loosening by V-shaped cutter is an efficient way to remove poor water infiltration, and significantly improve yield and WUE for wide beds under PRB farming system in arid areas of northwest China.  相似文献   

5.
The effects of mouldboard ploughing, shallow tined cultivation and direct drilling on yields of winter wheat, barley, oats and oilseed rape were compared over 10 years. Three field experiments were conducted on two non-calcareous clays (stagnogleys) and a weakly structured silty soil (argillic brown earth). Two spring N levels were applied to the winter wheat plots on the clay soil in three years and to the winter barley plots on the silty soil in one year. This paper reports the soil bulk density and water content at sowing and the crop growth, yield components and yields obtained during the later years of the study: 1979–1984 on the clayey soils and 1981–1984 on the silty soil.

In the years when cereals were grown, differences in yield between cultivation treatments were small and inconsistent. Oilseed rape yielded significantly more after direct drilling than ploughing because of better establishment and uniformity of growth.

The success of continuous reduced tillage depended on both burning crop residues and good weed control.  相似文献   


6.
Plant growth is directly affected by soil water, soil aeration, and soil resistance to root penetration. The least limiting water range (LLWR) is defined as the range in soil water content within which limitations to plant growth associated with water potential, aeration and soil resistance to root penetration are minimal. The LLWR has not been evaluated in tropical soils. Thus, the objective of the present study was to evaluate the LLWR in a Brazilian clay Oxisol (Typic Hapludox) cropped with maize (Zea mays L. cv. Cargil 701) under no-tillage and conventional tillage. Ninety-six undisturbed soil samples were obtained from maize rows and between rows and used to determine the water retention curve, the soil resistance curve and bulk density. The results demonstrated that LLWR was higher in conventional tillage than in no-tillage and was negatively correlated with bulk density for values above 1.02 g cm−3. The range of LLWR variation was 0–0.1184 cm3 cm−3 in both systems, with mean values of 0.0785 cm3 cm−3 for no-tillage and 0.0964 cm3 cm−3 for conventional tillage. Soil resistance to root penetration determined the lower limit of LLWR in 89% of the samples in no-tillage and in 46% of the samples in conventional tillage. Additional evaluations of LLWR are needed under different texture and management conditions in tropical soils.  相似文献   

7.
Nitrate leaching as influenced by soil tillage and catch crop   总被引:1,自引:0,他引:1  
Because of public and political concern for the quality of surface and ground water, leaching of nitrate is of special concern in many countries. To evaluate the effects of tillage and growth of a catch crop on nitrate leaching, two field trials were conducted in spring barley (Hordeum vulgare L.) under temperate coastal climate conditions. On a coarse sand (1987–1992), ploughing in autumn or in spring in combination with perennial ryegrass (Lolium perenne L.) as a catch crop was evaluated. Furthermore, rotovating and direct drilling were included. The experiment was conducted on a 19-year-old field trial with continuous production of spring barley. On a sandy loam (1988–1992), ploughing in autumn or in spring in combination with stubble cultivation and perennial ryegrass, in addition to minimum tillage, was evaluated in a newly established field trial. For calculation of nitrate leaching, soil water isolates from depths of 0.8 or 1.0 m were taken using ceramic cups. No significant effect of tillage was found on the coarse sand; however, a significant effect of tillage was found on the sandy loam, where leaching from autumn ploughed plots without stubble cultivation was 16 kg N ha−1 year−1 higher than leaching from spring ploughed plots. Leaching was significantly less when stubble cultivation in autumn was omitted. Leaching on both soil types was significantly reduced by the growth of a catch crop which was ploughed under in autumn or in spring. It was concluded that soil cultivation increased leaching on the sandy loam but not on the coarse sand, and that the growth of perennial ryegrass as a catch crop reduced leaching on both soil types, particularly when ryegrass was ploughed under in spring.  相似文献   

8.
Soil water content during tillage can have a large impact on soil properties and tillage outcome. Measurement of soil relief in relation to fixed elevation points provides a non-destructive method of monitoring loosening/compacting processes during the year. The main objective of this study was to determine the effect of soil water content during primary tillage on soil physical properties.

The treatments included mouldboard and chisel ploughing of a clay soil on three occasions in the autumn, with gradually increasing water content (0.76, 0.91 and 1.01 × plastic limit). Soil surface height was measured by laser within a 0.64 m2 area from fixed steel plates after each tillage occasion, and before and after seedbed preparation in the following spring. The measurements of surface height were compared with measurements of other soil physical properties, such as bulk density, saturated hydraulic conductivity and seedbed properties.

Tillage at the lowest water content (0.76 × plastic limit) produced the greatest proportion of small aggregates, and generally the most favourable soil conditions for crop growth. Soil loosening, as measured by increase in soil height during primary tillage, was highest for mouldboard ploughing and for tillage at the lowest water content. Differences between tillage treatments decreased with time, but were still significant after sowing in the spring. Natural consolidation during winter was smaller than the compaction during seedbed preparation in the spring. No significant differences in bulk density were found between treatments, and thus soil surface height was a more sensitive parameter than bulk density determined by core sampling to detect differences between treatments.

Late tillage under wet conditions caused a greater roughness of the soil surface and the seedbed base, which was also found in the traditional seedbed investigation. The effect of tillage time on seedbed properties also resulted in a lower number of emerged plants in later tillage treatments.

The laser measurements were effective for studying changes in soil structure over time. The results emphasize the need to determine changes in soil physical properties for different tillage systems over time in order to model soil processes.  相似文献   


9.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

10.
The capability of the soil water balance model SIMWASER to predict the impact of soil compaction upon the yield of maize (Zea mays L.) is tested, using the results of a field experiment on the influence of soil compaction by wheel pressure upon soil structure, water regime and plant growth. The experimental site was located on an Eutric Cambisol with loamy silt soil texture at an elevation of 260 m in the northern, semi-humid sub-alpine zone of Austria. Within the experimental field a 7 m wide strip was compacted by a tractor driven trailer just before planting maize in May 1988. Compression effects due to trailer traffic resulted in distinct differences of physical and mechanical soil parameters in comparison with the uncompressed experimental plots down to a depth of about 30 cm: bulk density and penetration resistance at field capacity were increased from 1.45 to 1.85 g/cm3, and from 0.8 to 1.5 MPa, respectively, while air-filled pore space as well as infiltration rate were appreciable lowered from about 0.08–0.02 cm3/cm3 and from 50 to 0.5 cm per day, respectively. The overall effect was a clear depression of the dry matter grain yield from 7184 kg/ha of the non-compacted plot to 5272 kg/ha in the compacted field strip. The deterministic and functional model SIMWASER simulates the water balance and the crop yield for any number of crop rotations and years, provided that daily weather records (air temperature, humidity of air, global radiation, wind and precipitation) are available. Crop growth and soil water regime are coupled together by the physiological processes of transpiration and assimilation, which take place at the same time through the stomata of the plant leaves and are both reacting in the same direction to changes in the soil water availability within the rooting zone. The water availability during rainless seasons depends on the hydraulic properties of the soil profile within the rooting depth and on rooting density. Rooting depth and density are affected by both the type of the crop and the penetration resistance of the soil, which depends on the soil moisture status and may be strongly increased by soil compaction. The model SIMWASER was able to simulate these effects as shown by the calculated grain yields, which amounted in the non-compacted plot to 7512 and to 5558 kg dry matter/ha in the compacted plot.  相似文献   

11.
Little is known about the long-term effects of tillage and crop residue management on soil quality and organic matter conservation in subarctic regions. Therefore, we quantified wet aggregate stability, bulk density, pH, total organic C and N, inorganic N, microbial biomass C and N, microbial biomass C:N ratio, microbial quotient, and potential C and N mineralization for a tillage/crop residue management study in central Alaska. Soil from no-till (NT), disked once each spring (DO), and disked twice (DT, spring and fall) treatments was sampled to 20 cm depth in spring and fall of the 16th and 17th years of the study. Crop residues were either retained or removed after harvest each year. Reducing tillage intensity had greater impact on most soil properties than removing crop residues with the most notable effects in the top 10 cm. Bulk density was the only indicator that showed significant differences for the 10–20 cm depth, with values of 0.74 Mg m−3 in the surface 10 cm in NT compared to 0.86 in DT and 1.22 Mg m−3 in NT compared to 1.31 in DT for the 10–20 cm depth. Wet aggregate stability ranged from 10% in DT to 20% in NT. Use of NT or DO conserved soil organic matter more than DT. Compared to measurements made in the 3rd and 4th years of the study, the DT treatment lost almost 20% of the soil organic matter. Retaining crop residues on the soil conserved about 650 g m−2 greater C than removing all residues each year. Soil microbial biomass C and mineralizable C were highest in NT, but the microbial C quotient, which averaged only 0.9%, was not affected by tillage or crop residue treatment. Microbial biomass C:N ratio was 11.3 in DT and 14.4 in the NT, indicating an increasing predominance of fungi with decreasing tillage intensity. Barley grain yield, which averaged 1980 kg ha−1 over the entire 17 years of the study, was highest in DO and not significantly different between NT and DT, but weeds were a serious problem in NT. Reduced tillage can improve important soil quality indicators and conserve organic matter, but long-term NT may not be feasible in the subarctic because of weed problems and build up of surface organic matter.  相似文献   

12.
Collembola and microbial biomass C were investigated in a field experiment with controlled agricultural traffic and crop rotation over a period of 27 months. The wheel-induced compactive efforts were applied according to management practices within the crop rotation of sugar beet, winter wheat, and winter barley. Increasing wheel traffic produced increasing soil compaction, mainly due to a reduction in surface soil porosity. Increasing soil compaction was accompanied by a decrease in microbial biomass C and the density of collembola. The influence of soil compaction on microbial biomass C was smaller than that of the standing crop. However, for collembola, especially euedaphic species, a reduction in pore space appeared to be of more importance than the effects of a standing crop. Within the crop rotation, microbial biomass C and the density of collembola increased in the order sugar beet, winter wheat, and winter barley.  相似文献   

13.
The use of heavy machinery is increasing in agriculture, which induces increased risks of subsoil compaction. Hence, there is a need for technical solutions that reduce the compaction risk at high total machine loads. Three field experiments were performed in order to study the effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil. Vertical soil stress was measured at three different depths by installing probes into the soil horizontally from a dug pit. In one experiment, also the stress distribution below the tyre was measured. Beneath the dual wheels, vertical stresses at 0.15 and 0.3 m depth were lower between the two wheels than under the centre of each wheel, despite the gap between the wheels being small (0.1 m). At 0.5 m depth, vertical stress beneath the wheels was the same as between the two wheels. The stress interaction from the two wheels was weak, even in the subsoil. Accordingly, measured stresses at 0.3, 0.5 and 0.7 m depth were highest under the centre of each axle centre line of tandem wheels, and much lower between the axles. For a wheel load of 86 kN, tyre inflation pressure significantly affected stress at 0.3 m depth, but not at greater depths. Stress directly below the tyre, measured at 0.1 m depth, was unevenly distributed, both in driving direction and perpendicular to driving direction, and maximum stress was considerably higher than tyre inflation pressure. Calculations of vertical stress based on Boussinesq's equation for elastic materials agreed well with measurements. A parabolic or linear contact stress distribution (stress declines from the centre to the edge of the contact area) was a better approximation of the contact stress than a uniform stress distribution. The results demonstrate that stress in the soil at different depths is a function of the stress on the surface and the contact area, which in turn are functions of wheel load, wheel arrangement, tyre inflation pressure, contact stress distribution and soil conditions. Soil stress and soil compaction are a function of neither axle load nor total vehicle load. This is of great importance for practical purposes. Reducing wheel load, e.g. by using dual or tandem wheels, also allows tyre inflation pressure to be reduced. This reduces the risk of subsoil compaction.  相似文献   

14.
Secondary tillage performed under inadequate soil water contents usually leads to a poor seedbed. Under normal Swedish weather conditions, clayey soils ploughed during autumn form a very dry top layer in spring, which acts as an evaporation barrier so that deeper layers remain wet. Thus, the conventional approach considering soil workability in relation to a single value of soil water content is difficult to apply. Hence, a field experiment was carried out to study the effect of seedbed preparation date, the associated soil water contents and traffic consequences on the physical properties of a spring seedbed. The field was autumn ploughed and the experiment started as soon as the field was trafficable after winter thawing. The seedbed preparation consisted of three harrowing operations on plots 8 m×8 m (three replications) with a spring tined harrow and a tractor mounted with dual tyres and was performed on 10 occasions from the beginning of April to the middle of May. With the exception of some short periods after rain, the soil had a clear water stratification during the experiment, with a very dry superficial layer (5–20 mm thick) contrasting to water contents over 300 g kg−1 from only 40 mm depth. After the harrowing operation, the seedbed aggregate fraction less than 2 mm increased from about 40% at the beginning of April to about 60% for the last four treatments in May. Contributing factors to the rise were attributed to the lower water contents of the top layer (<40 mm) and the drying–wetting and freezing–thawing cycles that occurred in the surface layer during April. There were no significant differences in bulk density after harrowing between the treatments but an increase in penetration resistance up to a depth of 180 mm in the harrowed plots was statistically significant (P<0.001). In the non-harrowed soil, penetration resistance also increased, including in those soil layers where water contents kept nearly constant.

In conclusion, the seedbed preparation dates had only a minor effect on soil compaction, as measured by bulk density and penetration resistance, due to the slow drying beneath the dry top layer. The fraction of fine aggregates in the seedbed increased with time. Thus, the optimal time for seedbed preparation depended mainly on soil friability and not on the risk of compaction.  相似文献   


15.
Soil structure is important to root development and crop yield. The objective of this study was to test the Cropping Profile Method in Brazilian soils, in order to evaluate the soil structure in the field. Grouped different structures determined by the Cropping Profile Method were compared to laboratory determinations for soil bulk density, total porosity and mercury porosity. The study was conducted in clayey Oxisols submitted to different uses and management including annual crops, orchards and natural forests in the State of Paraná, southern Brazil. Homogeneous morphological units (HMUs) were determined in trenches using the Cropping Profile Method, and the different structures were grouped as: (a) non-compacted; (b) compacted; (c) in-process-of-compacting. Results of field evaluation were compatible with those obtained in the laboratory. More compacted and in-process-of-compacting structures corresponded to soil bulk density values of 1.42 and 1.33 Mg m−3, which were significantly higher than the 1.18 Mg m−3 value obtained for soil bulk density in non-compacted HMU. The total porosity of compacted HMU and in-process-of-compacting HMU was 0.49 and 0.52 m3 m−3, respectively. These were significantly lower than the value obtained for the non-compacted HMU (0.60 m3 m−3). The Cropping Profile Method is useful mainly in field research works when it is important to verify the effect of management practices on soil structure.  相似文献   

16.
Seedbed preparation can involve a wide range of tillage methods from intensive to reduced cultivation systems. The state or quality of the soil to which these tillage methods are applied for cereal crop management is not easily determined and excessive cultivations are often used. Seedbed preparation is crucial for crop establishment, growth and ultimately yield. A key aspect of the soil condition is the soil physical environment under which germination, growth and establishment occur. Crucially this affects factors such as temperature, water content, oxygen availability, soil strength and ultimately the performance of a seedbed. The dynamics of soil physical properties of a range of seedbeds and how they relate to crop establishment are considered in this paper. Significant interactions between cultivation techniques, physical properties of the seedbed in terms of penetration resistance, shear strength, volumetric water content and bulk density and the interaction with crop establishment were identified. A soil quality of establishment (SQE) model was developed for the prediction of crop establishment based upon soil bulk density and cultivation practices. The SQE significantly accounted for ca. 50% of the variation occurring and successfully predicted crop establishment to a standard error of around 20 plants per m−2 across contrasting soil types and environmental conditions.  相似文献   

17.
Tillage management can affect crop growth by altering the pore size distribution, pore geometry and hydraulic properties of soil. In the present communication, the effect of different tillage management viz., conventional tillage (CT), minimum tillage (MT) and zero-tillage (ZT) and different crop rotations viz. [(soybean–wheat (S–W), soybean–lentil (S–L) and soybean–pea (S–P)] on pore size distribution and soil hydraulic conductivities [saturated hydraulic conductivity (Ksat) and unsaturated hydraulic conductivity {k(h)}] of a sandy clay loam soil was studied after 4 years prior to the experiment. Soil cores were collected after 4 year of the experiment at an interval of 75 mm up to 300 mm soil depth for measuring soil bulk density, soil water retention constant (b), pore size distribution, Ksat and k(h). Nine pressure levels (from 2 to 1500 kPa) were used to calculate pore size distribution and k(h). It was observed that b values at all the studied soil depths were higher under ZT than those observed under CT irrespective of the crop rotations. The values of soil bulk density observed under ZT were higher in 0–75 mm soil depth in all the crop rotations. But, among the crop rotations, soils under S–P and S–L rotations showed relatively lower bulk density values than S–W rotation. Average values of the volume fraction of total porosity with pores <7.5 μm in diameter (effective pores for retaining plant available water) were 0.557, 0.636 and 0.628 m3 m−3 under CT, MT and ZT; and 0.592, 0.610 and 0.626 m3 m−3 under S–W, S–L and S–P, respectively. In contrast, the average values of the volume fraction of total porosity with pores >150 μm in diameter (pores draining freely with gravity) were 0.124, 0.096 and 0.095 m3 m−3 under CT, MT and ZT; and 0.110, 0.104 and 0.101 m3 m−3 under S–W, S–L and S–P, respectively. Saturated hydraulic conductivity values in all the studied soil depths were significantly greater under ZT than those under CT (range from 300 to 344 mm day−1). The observed k(h) values at 0–75 mm soil depth under ZT were significantly higher than those computed under CT at all the suction levels, except at −10, −100 and −400 kPa suction. Among the crop rotations, S–P rotation recorded significantly higher k(h) values than those under S–W and S–L rotations up to −40 kPa suction. The interaction effects of tillage and crop rotations affecting the k(h) values were found significant at all the soil water suctions. Both S–L and S–P rotations resulted in better soil water retention and transmission properties under ZT.  相似文献   

18.
Chinese grasslands have undergone great changes in land use in recent decades. Approximately 18.2% of the present arable land in China originated from the cultivation of grassland, but its impact on the carbon cycle has not been fully understood. This study was conducted in situ for 3 years to assess the comprehensive effects of cultivation of temperate steppe on soil organic carbon (SOC) and soil respiration rates as well as ecosystem respiration. As compared with those in the Stipa baicalensis steppe, the SOC concentrations at depths of 0–10 and 10–20 cm in the spring wheat field were found to have decreased by 38.3 and 17.4% respectively from 29.5 and 21.9 g kg−1 to 18.2 and 18.1 g kg−1 after a cultivation period of 30 years. Accordingly, the total amounts of soil respiration through the growing season (from April to September) in 2002, 2003 and 2004 were 265.2, 282.2 and 237.4 g C m−2 respectively in the spring wheat field, which were slightly lower than the values of 342.2, 412.0 and 312.1 g C m−2 in the S. baicalensis steppe, while ecosystem respiration of 690.9, 991.2 and 569.6 g C m−2 respectively in the spring wheat field were markedly higher than those of 447.0, 470.9 and 429.7 g C m−2 in the steppe plot. Similar seasonal variations of ecosystem respiration and soil respiration existed in both sample sites. Respiration rates were higher and greater differences existed in both ecosystem respiration and soil respiration during the exuberant growth stage of plants (from mid-June to mid-August). However, in the slower-growth period of the growing season (before late May and after late August), the CO2 effluxes of the two sample sites were similar and remained at a relatively low level. The results also showed that ecosystem respiration and soil respiration were under similar environmental controls in both sample sites. Soil water content at a depth of 0–10 cm and soil temperatures at 5 and 10 cm were the main factors affecting the variations in ecosystem respiration and soil respiration rates in droughty years of 2002 and 2004 and in the rainy 2003, respectively. This study suggests that the conversion of the grassland to the spring wheat field has increased the carbon loss of the whole ecosystem due to the change of vegetation cover type and significantly reduced the carbon storage of surface soil. In addition, the tillage of grassland had different effects on ecosystem respiration and soil respiration. The effects were also dissimilar in different growth stages, which should be fully considered when assessing and predicting the effects of cultivation on the net CO2 balance of grassland ecosystems.  相似文献   

19.
Abstract. There is a lack of information about the influence of tillage and time of sowing on N2O and NO emission in cereal production. Both factors influence crop growth and soil conditions and thereby can affect trace gas emissions from soils. We measured fluxes of NO and N2O in a tillage experiment where grassland on clay loam soil was converted to arable by either direct drilling or ploughing to 30 cm depth. We made measurements in spring for 20 days after fertilizer application to spring-sown and to winter-sown barley. Both were the second barley crop after grass. Direct drilling enhanced N2O emission primarily as a result of restricted gas diffusivity causing poor aeration after rainfall. Deep ploughing enhanced NO emission, because of the large air-filled porosity in the topsoil. NO and N2O emissions were smaller from winter sown crops than from spring sown crops.   The three rates of N fertilizer application (40, 80 or 120 kg N ha–1) did not produce the expected linear response in either soil available N concentrations or in NO and N2O fluxes. We attributed this to the lack of rainfall in the ten-day period after fertilizer application and therefore very slow incorporation and movement of fertilizer into and through the soil.  相似文献   

20.
Summary The yield-depressing effect due to repeated cropping (monoculture) of barley reported from long-term field experiments was observed as a reduction in plant growth in short-term pot experiments. The nature of the monoculture effect was investigated by mixing field soils with different cropping histories in different proportions in the greenhouse, while the influence of rhizosphere microflora from the monocultured and crop rotation soils on barley growth was studied in gnotobiotic experiments. Indigenous bacterial populations and the pH of the test soils were also measured. Significantly more bacteria were found in the crop rotation soil compared to the monocultured soil, but the two soils did not differ in pH. Greenhouse experiments showed that in the monocultured soil, seed germination was delayed and plant dry weight reduced, and that these effects had a biological origin. Attempts were also made to induce the monoculture effect in the crop rotation soil by inoculation with known harmful bacteria. The results from the experiments with mixed soils and with soil inoculation indicated that where crop rotation was practised the soil was more sensitive to bacterial effects than the monocultured soil. The rhizosphere microflora from the monocultured soil did not affect plant weights in short-term gnotobiotic experiments, but it significantly stimulated the number of lateral roots compared with the crop rotation microflora. This stimulation could not be related to differences in bacterial counts, pH, or ion concentrations in the plant-growing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号