共查询到18条相似文献,搜索用时 62 毫秒
1.
基于多特征融合的田间杂草分类识别 总被引:4,自引:0,他引:4
提出了一种基于模糊BP综合神经网络的田间杂草分类识别方法。对分类特征进行模糊化处理,充分考虑了杂草的分类特征本身存在的不确定性。使用遗传算法对网络结构进行优化处理,提高了该综合神经网络的收敛性和稳定性。并基于特征级数据融合方法进行杂草识别。对田间7种杂草进行识别的实验结果表明,7种杂草的混合识别率达到94.2%;另外,对玉米及其伴生杂草进行分类测试,混合识别率达到96.7%,具有较好的识别精度。 相似文献
2.
基于机器视觉的茶陇识别与采茶机导航方法 总被引:5,自引:0,他引:5
为提高机器采摘茶叶整体质量及采摘效率,提出一种基于机器视觉的机采茶陇识别与采茶机导航的方法。在采茶机器的前方配置摄像头用于获取待采摘茶陇的视频图像,对安装在采茶机上的摄像机内外参数进行离线标定;对茶陇的视频图像用高斯滤波、颜色坐标系转换、局部OTSU多阈值法图像分割、最小二乘法直线拟合等算法进行处理,提取出茶陇的左右边缘线;根据标定结果计算出茶陇中心线,并在驾驶座的显示屏上标识出目前采茶机的采摘状态,包括茶陇中心线和采茶机的偏移情况,提示驾驶员根据识别结果进行适当调整。实验结果表明,提出的基于机器视觉的机采茶陇识别及采茶机导航的方法能有效解决目前机采茶叶老嫩茶叶一刀切下的弊端,为完全自动化采摘奠定了基础。 相似文献
3.
多源传感器信息融合的农用小车路径跟踪导航系统 总被引:6,自引:0,他引:6
为解决四轮独立驱动农用小车在设施农业和畜牧业的物料运输和信息采集中的导航及控制问题,构建了农用小车导航控制系统,优化配置多个传感器,提出了基于CCD图像传感器、加速度计、电子罗盘及超声波等多传感器信息融合的导航控制方法。通过CCD获取标识路径信息,通过加速度计、电子罗盘获取小车姿态信息,通过超声波传感器判断障碍物,并给出路径特征提取、识别、多源信息融合自主导航控制和超声避障等算法,实现了小车的路径跟踪的导航控制,实验结果表明构建的导航控制系统及导航控制方法正确、有效。 相似文献
4.
基于机器视觉的农田机械导航线提取算法研究 总被引:4,自引:0,他引:4
随着科学技术的发展,精细农业已成为现代农业发展的主导方向。农业机械的自动导航技术是精细农业的关键技术之一,也是实施精准农业的基础。机器视觉由于其广泛实用性,已成为农田机械导航线提取的重要方法。目前,机器视觉自动导航线提取易受自然环境干扰,且在实时处理速度上有待提高。为此,研究了一种导航线提取算法,旨在简化图像处理,提高通用性。首先对CCD获取的彩色农田图像,使用改进的过绿色算法进行灰度化,得到目标区分较好的图像;然后使用改进的OTSU算法对图像进行分割,得到二值图像,再采用滤波、腐蚀、膨胀相结合的算法去除图像噪声;最后提取作物行骨架,拟合作物行直线并进行方向校正,计算相机偏差,为实时校正航向提供反馈信息。试验结果表明,该算法处理一幅图像所用时间在200ms左右,可满足农田机械实时导航的要求。 相似文献
5.
随着我国信息化技术的逐渐提高,机械自动化、集成电路、智能控制系统和测试计量等行业得到了快速发展,使得移动机器人达到了一个全新的高度,农业机器人也因此被广泛应用。在机器人众多研究问题中,全方位视觉的目标识别与跟踪一直是比较复杂并较难解决的问题。为此,基于全方位的自主导航技术,根据农业机器人工作特点和运动特性,建立了机器人工作空间的环境模型,提出了一种陆标导航和运动目标跟踪系统的视觉伺服方案,开发了以DSP控制器为核心的全方位视觉图像处理系统。试验结果表明:所设计的农业机器人全方位视觉目标识别与跟踪系统精准度高,可靠性和实时性强,各项性能指标优。 相似文献
6.
基于特征融合和SVM的稻谷品种识别 总被引:1,自引:0,他引:1
为快速有效地识别稻谷品种,提出一种基于特征融合和SVM的稻谷品种识别方法。采集华南双季稻区4种不同的籼稻品种(象牙香占、江航丝苗、小农占和五优234),采用图像处理的方法对稻谷图像进行灰度化、二值化和形态学处理等预处理操作,提取稻谷图像的形状特征和颜色特征,建立单特征模型和融合特征模型,构建SVM分类器,进行稻谷品种识别试验,并进行模型选择和讨论。结果表明,两两品种差异性显著的6个形状特征参数为:面积、长轴长、短轴长、离心率、周长和形状因子;形状特征模型对于不规则形状和大小的谷粒品种具备较好的识别能力;与BP神经网络识别模型相比,SVM模型的识别率更高、时间更短。基于特征融合和SVM的稻谷品种识别获得较高的准确率99.50%和较短的识别时间0.165 s,可满足稻谷在线识别与质量检测的精度和实时性要求。 相似文献
7.
8.
对行喷雾技术可提高农药的利用率,有利于保护环境和减少农药残留。本文搭建基于机器视觉的大田甘蓝对行喷雾控制系统。通过改进的ExG算法提取颜色信息,采用最大类间方差法和形态学的开闭运算分割作物与背景。提出甘蓝作物行定位与多作物行自适应ROI提取方法,在条带分割的ROI内基于限定阈值垂直投影对特征点集进行采集,通过最小二乘法对特征点集进行线性拟合得到作物行中心线。利用中心线几何关系得到作物行偏移信息,根据对行机构的运动特性建立对行偏移补偿模型,并设计基于PID轨迹追踪算法的对行喷雾控制系统。试验结果表明,实验室作物行识别准确率为95.75%,算法平均耗时为77ms。在田间试验中,识别算法在时间段09:00—11:00、14:00—16:00内测试效果最佳,识别偏差均值保持在2.32cm以下。针对不同范围的杂草测试中,算法平均识别成功率为95.56%,说明算法具有较强的鲁棒性。在与其他识别算法对比测试中,本文算法平均耗时最短,识别成功率最高,能够为实时作业提供视觉引导。在对行喷雾控制系统田间试验中,对行准确率达到93.33%,对行控制算法可将对行偏差控制在1.54cm,满足田间实际应用要求。 相似文献
9.
对行喷雾技术可提高农药的利用率,有利于保护环境和减少农药残留。本文搭建基于机器视觉的大田甘蓝对行喷雾控制系统。通过改进的ExG算法提取颜色信息,采用最大类间方差法和形态学的开闭运算分割作物与背景。提出甘蓝作物行定位与多作物行自适应ROI提取方法,在条带分割的ROI内基于限定阈值垂直投影对特征点集进行采集,通过最小二乘法对特征点集进行线性拟合得到作物行中心线。利用中心线几何关系得到作物行偏移信息,根据对行机构的运动特性建立对行偏移补偿模型,并设计基于PID轨迹追踪算法的对行喷雾控制系统。试验结果表明,实验室作物行识别准确率为95.75%,算法平均耗时为77 ms。在田间试验中,识别算法在时间段09:00—11:00、14:00—16:00内测试效果最佳,识别偏差均值保持在2.32 cm以下。针对不同范围的杂草测试中,算法平均识别成功率为95.56%,说明算法具有较强的鲁棒性。在与其他识别算法对比测试中,本文算法平均耗时最短,识别成功率最高,能够为实时作业提供视觉引导。在对行喷雾控制系统田间试验中,对行准确率达到93.33%,对行控制算法可将对行偏差控制在1.54 cm,满足田间实际应用要... 相似文献
10.
11.
在主从式AGV协同作业中,跟随AGV的定位和导引,除了获取环境信息,还需要观测领航AGV的位姿进行路径跟随,对精度和稳定性有更高的要求。为了提高跟随AGV的导航精度,提出一种惯性导航与多目视觉结合的组合导航方法。针对多传感器的数据融合问题,提出一种基于自适应无迹卡尔曼滤波的跟随AGV最优位姿估计方法。惯导传感器输出信号用于跟随AGV的状态预测;路径跟踪导航与RGB-D视觉导航组成多目视觉导航,作为系统观测修正惯导的累积误差。实验表明,本文提出的复合导引方案具有更快的偏差收敛速度、更稳定的路径跟踪状态和队形保持,提高了双车协同搬运系统的实时性和鲁棒性。 相似文献
12.
为提高林果园移动机器人导航系统的精确性与鲁棒性,提出一种基于激光雷达三维点云的果园行间高低频双源信息融合实时导航方法。首先,喷雾机器人搭载三维激光雷达采集两侧果树点云信息,对原始点云数据进行直通滤波、降采样和统计滤波等预处理,保留感兴趣区域内果树冠层点云;然后,将分别基于高频更新的牛顿插值算法和低频更新的非线性支持向量机(Non-linear support vector machine, NSVM)算法拟合的行间导航线进行互补融合;最后,在导航线切换时,对融合后导航线的稳定性进行优化,并使用三次B样条算法使导航线平滑。实验结果表明:融合优化后的导航线最大曲率为0.048 m-1,平均曲率为0.018 m-1;分别以0.5 m/s和1.0 m/s的行驶速度对融合优化后的导航线进行跟踪,绝对横向偏差最大值分别为0.104 m和0.130 m,平均值分别为0.053 m和0.049 m,说明该导航方法能够满足作业装备在果园行间自主导航作业的需求,为喷雾机器人在果园环境中的自主导航提供技术参考。 相似文献
13.
针对果园道路无明显边界且道路边缘存在阴影、土壤和沙石干扰等问题,提出一种基于特征融合的果园非结构化道路识别方法。通过相机标定获取畸变参数对采集到的图像进行畸变矫正,并提出一种基于滤波与梯度统计相结合的动态感兴趣区域(ROI)提取方法对HSV颜色空间S分量进行ROI选取,采用最大值法将颜色特征与S分量多方向纹理特征掩膜相融合并进行二值化与降噪处理。根据道路边缘突变特征寻找特征点,并提出一种基于距离与位置双重约束的两级伪特征点剔除方法。为更好贴合非结构化道路不规则边缘,引入分段三次样条插值法拟合道路边缘,以此实现道路识别。试验结果表明,在晴天、阴天、顺光、逆光、冬季晴天和雨雪天气6种工况条件下,S分量、纹理图像和融合图像的平均纵向偏差均值分别为2.43、39.71、1.36像素,平均偏差率均值分别为0.99%、18.02%和0.54%,相较于S分量与纹理图像而言,使用本文方法构建的融合图像其平均纵向偏差与平均偏差率均得到有效减少。最小二乘法、随机采样一致性法(RANSAC)与分段三次样条插值法拟合边缘的平均偏差均值分别为2.64、3.16、0.66像素,平均偏差率均值分别为1.02%、1.... 相似文献
14.
针对丘陵山地中拖拉机的侧滑估计,提出了一种融合机器视觉与全球卫星导航定位系统(Global navigation satellite system,GNSS)的多传感器信息融合算法。首先提出了简化的拖拉机运动学模型,再阐述基于GNSS与机器视觉技术的侧滑量估计方法。并通过CarSim和Simulink的联合仿真验证侧滑估计方法的可行性。引入卡尔曼滤波和权重函数对传感器数据进行融合和动态调节。搭建模拟丘陵山地实验平台,在不同的地面倾角、GNSS遮挡条件以及路面条件下进行了实验。实验结果表明,在干燥路面且GNSS遮挡条件下,拖拉机在9°、18°路面条件下行驶时最终融合后的总侧滑量分别为0.322m和0.432m,相对误差分别为7.86%和6.00%,即在GNSS信号遮挡的情况下依然能够准确地估计出拖拉机的侧滑量。研究可为拖拉机的精确横向控制提供新的方法和实验基础。 相似文献
15.
水稻收获作业视觉导航路径提取方法 总被引:6,自引:0,他引:6
针对水稻收获视觉导航中的路径规划问题,提出一种水稻收获作业视觉导航路径提取方法。通过相机标定获取畸变参数矫正原始图像,并进行高斯滤波,采用基于2R-G-B超红特征模型的综合阈值法进行图像二值化分割,并对二值图像进行形态学的开-闭运算,抑制噪声干扰,根据图像灰度垂直投影值动态设定感兴趣区域,水平扫描获取作物线拟合关键点,最后采用多段三次B样条曲线拟合法提取水稻待收获区域边界线。室内试验表明,采用本文所提出的图像处理方法提取的图像中距离信息平均误差为9. 9 mm、偏差率为2. 0%,角度信息平均误差为0. 77°、误差率2. 7%。在顺光、逆光、强光、弱光4种光线环境下,对中粳798和临稻20两种作物进行了收获路径提取田间试验,以像素误差、距离误差、相对误差和标准差为评价指标,对比了不同光线下的路径提取结果,试验结果表明,对于中粳798的收获图像,4种光线环境下15个关键点的平均像素误差为28. 7像素,平均距离误差39. 7 mm,平均相对误差2. 7%;强光环境平均像素误差最小,为26. 2像素;弱光环境平均距离误差最小,为23. 9 mm;强光环境平均相对误差最小,为2. 0%;顺光环境稳定性最好,标准差为6. 8像素。对于临稻20的收获图像,4种光线环境下15个关键点的平均像素误差36. 5像素,平均距离误差45. 0 mm,平均相对误差2. 8%,在逆光环境下的平均像素误差、平均距离误差和平均相对误差均最小,分别为29. 5像素、36. 9 mm和2. 3%,稳定性也最好,标准差为10. 8像素。单帧图像平均处理时间38 ms。本研究可为田间作物线检测和收获作业的自动导航提供参考。 相似文献
16.
为实现视觉导航的精确性和鲁棒性,研究了温室复杂环境机器人视觉导航路径的识别方法。以温室内西红柿苗垄为研究对象,在地膜、光线和阴影等复杂环境对植物识别的影响下,用Lab色彩空间将绿色植物从背景中分离出来;用基于权重因子的阈值分割算法代替常用的阈值分割算法;用改进的Hough变换的导航线提取方法处理有杂草干扰的作物垄。试验证明,该方法对复杂温室环境下作物垄导航线的提取有较好的适应性,而且算法简单,能够满足实时性的要求。 相似文献
17.
农业机械远高于人工的生产效率,可在较短时间内完成目标作业。精准农业是现代农业的发展方向,对农业机械提出了更高要求。语音识别技术可以赋予机器识别和理解人类语音的能力,在农业机械控制上有着广阔的应用前景。为此,基于英语语音识别技术设计了一种水稻收割机的控制系统,以嵌入式微处理芯片为核心,通过隐马尔科夫(HMM)模型算法识别英语语音并以指令的形式输出,对机械的行驶速度、行驶方向和割台高度进行控制。试验表明:系统具有较好的语音识别准确性和实时性,可以降低收割机的操作难度,提高智能化水平。 相似文献
18.
针对温室颠簸不平、枝叶遮挡道路的复杂环境,开展基于相机与激光雷达数据融合的机器人行间导航方法研究。首先,利用改进的U-Net模型实现图像道路区域的准确快速分割;其次,通过融合图像分割结果进行地面点云预分割,减少地面起伏造成的点云倾斜;然后,采用改进的KMeans算法实现作物行点云快速聚类,并将聚类中心作为作物行主干区域点,降低枝叶遮挡对作物行中线提取的影响;最后,采用RANSAC算法拟合两侧作物行方程并计算出导航线。通过实验评估导航线精度,在测试集中94%以上数据帧可以准确实现提取导航线,平均角度误差不高于1.45°,满足温室机器人沿作物行自主导航行驶要求。 相似文献