首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 15 毫秒
1.
Over the last three decades, the presence and functional roles of arbuscular mycorrhizal (AM) fungi in wetland habitats have received increasing attention. This review summarized the mycorrhizal status in wetlands and the effect of flooding on AM fungal colonization. Plants of 99 families living in 31 different habitats have been found to be associated with AM fungi, even including submerged aquatic plants and several plant species that were thought to be nonmycorrhizal (Cyperaceae, Chenopodiaceae, and Plumbaginaceae). The functions of AM fungi in wetland ecological systems could be concluded as their influences on the composition, succession, and diversity of the wetland plant community, and the growth and nutrition of wetland plants. Affecting the composition, succession, and diversity of the wetland plant community, AM fungi have positive, negative, or neutral effects on the performance of different wetland species under different conditions. The factors that affect the application effect of AM fungi in constructed wetland (CW) include flooding, phosphorus, plant species, aerenchyma, salinity, CW types, operation modes of CW, and wastewater quality. The generalist AM fungi strains can be established spontaneously, rapidly, and extensively in wastewater bioremediation technical installations; therefore, AM fungi can be considered ideal inhabitants of technical installations for the plant-based bioremediation of groundwater contaminated by organic pollutants or other contaminants. In the future, roles of AM fungi and factors that affect the purifying capacity of AM-CW system must be understood to optimize CW ecosystem.  相似文献   

2.
Drought stress greatly affects the growth and development of plants in coal mine spoils located in the Inner Mongolia grassland ecosystem. Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance to drought. However, little is known regarding the contribution of AMF to plants that are grown in different types of coal mine spoils under drought stress. To evaluate the mycorrhizal effects on the drought tolerance of maize (Zea mays L.) grown in weathered (S1) and spontaneously combusted (S2) coal mine spoils, a greenhouse pot experiment was conducted to investigate the effects of inoculation with Rhizophagus intraradices on the growth, nutrient uptake, carbon:nitrogen:phosphorus (C:N:P) stoichiometry and water status of maize under well-watered, moderate and severe drought stress conditions. The results indicated that drought stress increased mycorrhizal colonization and decreased plant dry weights, nutrient contents, leaf moisture percentage of fresh weight (LMP), water use efficiency (WUE) and rehydration rate. A high level of AMF colonization ranging from 65 to 90% was observed, and the mean root colonization rates in S1 were lower than those in S2. In both substrates, inoculation with R. intraradices significantly improved the plant growth, P contents, LMP and WUE and decreased the C:P and N:P ratios of plants under drought stress. In addition, maize grown in S1 and S2 exhibited different wilting properties in response to AMF inoculation, and plant rehydration after drought stress occurred faster in mycorrhizal plants. The results suggested that inoculation with R. intraradices played a more positive role in improving the drought stress resistance of plants grown in S2 than those grown in S1. AMF inoculation has a beneficial effect on plant tolerance to drought and effectively facilitates the development of plants in different coal mine spoils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号